
IN5280 – Security by Design

Tanusan Rajmohan - tanusanr@ulrik.uio.no

UNIVERSITY OF OSLO

Spring 2019

Contents

1 Lecture 11: Leveraging your delivery pipeline for security and Handling failures securely 3

1.1 Delivery pipeline . 3

1.1.1 Build pipelines . 3

1.1.2 Deployment pipelines . 4

1.2 Securing your solution through unit testing . 4

1.3 Feature toggles . 4

1.3.1 Testing toggles . 5

1.3.2 Toggles - reasons to avoid . 5

1.4 Automated security tests . 5

1.4.1 Infrastructure as code . 6

1.5 Testing for availability . 6

1.5.1 Estimating headroom . 6

1.5.2 Exploiting domain rules . 6

1.6 Validating configuration . 7

1.7 Exceptions . 8

1.7.1 Exception payload . 8

1.8 Handling failures without exceptions . 8

1.9 Designing for availability . 9

1.9.1 Resilience . 9

1.9.2 Responsiveness . 9

1.9.3 Circuitbreakers . 10

1.9.4 Bulkheads . 10

1.10 Bad data . 11

1.10.1 Handling bad data . 11

1.10.2 Never fix bad data . 11

1.10.3 Never echo input . 11

1

Learning outcome

After completing IN5280, you will have:

• knowledge about how to include security requirements in system specifications, design, and testing.

• understanding of the trade-off between security risk, and the cost of implementing security controls.

• knowledge about GDPR (General Data Protection Regulation) as well as the major frameworks for threat

modelling, vulnerability management, and secure systems development.

And you will be able to:

• perform threat modelling and security/privacy risk assessment of system functionality and components.

• apply the principles of privacy by design and security by design during practical systems development.

• assess the maturity of secure systems development.

2

1 Lecture 1: Introduction

Definition: "Software security is the practice of building software to be secure and to continue to function properly

under malicious attack. (G. McGraw)

Vulnerability -> Attack -> Incident

Make less vulnerabilities, to decrease the attacks and incidents.

The Trinity of Trouble

The three pillars of software security

The Risk Management Framework (RMF)

1.1 Assets

Identification - Categorization - Assessment

Know what you have - that needs to be protected

1.1.1 Types of assets

Information assets, examples:

• Customer data

• Employee data

• CRM data

Software assets, examples:

• E-mail system

• Online ordering system

• Common authentication (SSO)
system

Physical assets, examples:

• Buildings

• Servers

• Network equipment

1.2 Case – Digital exam system

• The University of Southern Nomansland has decided to procure Digital Exam System

3

• This new system should support:

– Creation of exams including collaboration on this
task

– Safekeeping of exams until the exact time the exam-
ination begins

– Examination including hand-in of completed exams

– Distribution of completed exams to censors

– Communication of result to students

– Receive and manage complaints from students

– Communication of final results to students

1.2.1 Task 1

Identify assets for the digital exam system (Information,
Software, and Physical)

1.2.2 Task 2

Can you categorize the identified information assets?

1.2.3 Task 3

Assess the criticality of the assets with respect to: Confidentiality, Integrity, and Availability

4

2 Lecture 2: Threat Modeling

2.1 What is threat modeling?

A way of considering possible attacks to your system, users, organisation and environment

2.1.1 Why

• Understanding and document a product’s threat environment (E.g. attack techniques, malicious actors, mo-

tivation, consequences)

• Discover possible weaknesses as early as possible (E.g. missing requirements, exploitable interfaces in the

design)

• How to best spend your security budget (How to best spend your security budget)

• Retrospect

2.1.2 Threat agents

• Who or what are you afraid of?

• How will they perform the attack?

• Why are they doing it?

• What are they after?

• What is their motivation?

• What is their capacity?

• How skilled are they?

When
The Trustworthy Computing Security Development

Lifecycle (Microsoft)
Source:

http://msdn.microsoft.com/en-us/library/ms995349.aspx

Software Security Touchpoints (McGraw)
Source:

http://www.cigital.com/justiceleague/category/software-
security-touchpoints/

5

2.2 Threat Modeling and Agile

Project inception - high level

Requirements planning - Threats with highest impact

Spring planning - Where are the threats?

Sprint execution - Develop, update and compete

Final release planning - Complete models

2.2.1 How?

"there is no single best or correct way of performing threat modeling, it is a question of trade-offs and what we want

to achieve by doing it"

Source: A. Shostack, “Experiences Threat Modeling at Microsoft,” in Modeling Security Workshop, in Association

with MODELS’08, 2008.

. . . but here’s a typical threat modeling process:

1. Identify critical assets

2. Decompose the system to be assessed

3. Identify possible points of attack

1. Identify threats

2. Categorise and prioritise the threats

3. Mitigate

Threat model dialects: Data Flow Diagram Threat model dialects: Attack tree

6

2.3 Notation crash course

2.3.1 Data Flow Diagrams (DFD)

Why: Map attack surface and identify threat agents

• Understand the system

• Data flow between subsystems

• Find attack surface and critical components

• Privilege boundaries

7

2.3.2 Attack trees

WHY identify attacker goals, analyze paths of attack and plan security testing

• Possible ways of achieving an attack goal

• Tree structure with AND/OR nodes

• Easy to grasp by different stakeholders

• More technical than misuse cases

Attack tree notation

2.4 Why model threats? - summary

• Determine attack surface

• Structured approach

• Visual models are good for collaboration

• Know thy enemy!

8

3 Lecture 3: Threat Modeling, RMF and Security Requirements

3.1 Threat Modeling

3.1.1 STRIDE

SRIDE is a model of threats, used to help reason and find threat to a system

Each threat is a violation property for a system

3.1.2 Spoofing

• An example of identity spoofing is illegally accessing
and then using another user’s authentication inform-
ation, such as username and password.

• Are user indentities the only thing that can be
spoofed?

3.1.3 Tampering

• Data tampering involves the malicious modification
of data.

• What data can be tampered with?

– Data in databases, files, in transit, logs, the pro-
gram code

– An attacker can replay data without detection
because your code doesn’t provide timestamps
or sequence numbers.

9

3.1.4 Repudiation

• Repudiation threats are associated with users who
deny performing an action without other parties hav-
ing any way to prove otherwise.

• For example, a user performs an illegal operation in
a system that lacks the ability to trace the prohibited
operations

3.1.5 Information disclosure

• Information disclosure threats involve the exposure
of information to individuals who are not supposed
to have access to it.

• For example the ability of users to read a file that
they were not granted access to, or the ability of an
intruder to read data in transit between two com-
puters.

3.1.6 Denial of service

• Denial of service (DoS) attacks deny service to valid
users - for example, by making a Web server tempor-
arily unavailable or unusable.

3.2 Risk Management Framework

3.2.1 Elevation of privelege

• An unprivileged user gains privileged access and
thereby has a sufficient access to compromise or des-
troy the entire system.

• Includes those situations in which an attacker has ef-
fectively penetrated all system defenses and become
part of the trusted system itself.

10

3.2.2 Understanding the business context

• What is the business context of our case – digital
exam system?

• What do you know about being a student?

• What do you know about being a teacher?

• What do you know about the priorities and strategies
of the university?

3.2.3 Business goals

• Example – electronic voting system

3.2.4 Business risks

Example - electronic voting system

3.2.5 Basic Risk Analysis

Risk = Probability * Consequence
Risk Analysis:

• Used to rank risk - a tool to determine which risks
needs to be handled.

• Requires the ability to identify risks, calculate prob-
ability and define consequence in numbers.

Risk matrix:

3.2.6 Identity technical risks

Example - electronic voting system

3.3 Security Requirements

Best case Common case

11

3.3.1 What is a security requirement?

• a requirement defining what level of security is ex-
pected from the system with respect to some type of
threat or malicious attack

– Different from the choice of protection mechan-
isms (=design)

– i.e., what you require, not how to achieve it

• Sound requirements enables us to evaluate different
approaches to a need/problem - while being open to
different solutions

3.3.2 Criteria for writing good requirement spe-
cifications (Donald Firesmith)

• What, not how (external observability) - Avoid pre-
mature design or implementation decisions

• Understandability, clarity (not ambiguous)

• Cohesiveness (one thing per requirement)

• Testability

– Somehow possible to test or validate whether
the requirement has been met, clear acceptance
criteria

– Often requires quantification, this is more diffi-
cult for security than e.g. for performance

∗ "The response time of function F should be
max 2 seconds"

∗ "The security of function F should be at
least 99.9 % " ???

3.3.3 Are these good security requirements?

• "The application shall verify the identity of all of its
users before allowing them to use its capabilities."

• "The system shall allow users to log in with pass-
words of at least 8 characters, containing both small
and capital letters, numbers and special signs."

• "The system shall use Norton antivirus protection."

• "The application shall disinfect any file found to con-
tain a harmful program if disinfection is possible."

• "The system shall encrypt all confidential data using
the RSA algorithm"

3.3.4 Going agile: Security stories, Evil user stories

3.3.5 Examples

12

4 Lecture 4: Privacy by Design

What is data protection? Why do we need it?

What is personal information?

Fines from regulations

4.1 Information security and privacy 4.1.1 The data subject...who is that?

An identified or identifiable natural person (individual).

13

4.1.2 Personal data

• Personal data: means any information relating to
an identified or identifiable natural person.

• Behavior patterns: where you are, what you shop
for, what you are reading, who your friends are, what
you are communicating.

• Special categories of personal data: racial or
ethnic origin, political opinions, religious or philo-
sophical beliefs, or trade union membership, and
the processing of genetic data, biometric data for
the purpose of uniquely identifying a natural person,
data concerning health or data concerning a natural
person’s sex life or sexual orientation

4.1.3 Privacy principles (GDPR, art. 5

4.1.4 Responsibility of the controller 4.2 Privacy by Design - The 7 Founda-
tional Principles

1. Proactive not Reactive; Preventative not Remedial

2. Privacy as the Default Setting

3. Privacy Embedded into Design

4. Full Functionality - Positive-sum, not Zero-sum

5. End-to-End security - Full lifecycle protection

6. Visibility and Transparency - Keep it Open

7. Respect for User privacy - Keep it user centric

14

4.2.1 Guide: Software development with Data Protection by Design and by Default

• An understanding of data protection and information security is a prerequisite for developing software with

data protection by design and by default.

• Software developers should have an established development methodology, approved by management, that they

follow when developing software.

• When developing software that processes personal data, the methodology should include data protection by

design and by default, and security by design.

• Who?

– Developers, Architects, Testers, Project leaders,
Management, All employees, Suppliers

• When?

– At the start of deployment

– Updates at regular intervals

– At start of development project

Requirements

• Setting requirements for data protection and information security for the final product.

• Must reflect the need for data protection and information security.

• To set the correct requirements, it is important to know what categories of personal data will be processed in

the software.

• Requirements for software, products, applications, systems, solutions, or services must:

– fulfil the data-protection principles

– protect the data protection rights of the data subject

– fulfil the company’s obligations

– ensure that the settings are by default set to the most
privacy-friendly option

– ensure that the end product is robust, secure, and
provides enforceability of the data subjects rights

15

Design

• Ensure that requirements for data protection and information security are reflected in the design.

• It is important to take into account the existence of threat actors that may attempt to obtain and gain access

to personal data.

• To reduce the attack surface, it must be analysed, and the software modelled and designed to ensure a robust

end product.

• Data-oriented design requirements:

– Minimise and limit

– Hide and protect

– Separate

– Aggregate

– Data protection by default

• Process-oriented design requirements

– Inform

– Control

– Enforce

– Demonstrate

Coding

• Enable developers to write secure code by implementing the requirements for data protection and security.

• It is important to choose a secure and common methodology, both for coding and for enabling the developers

to detect and remove vulnerabilities from the code.

• Automated code analysis tools should be introduced, ant the company must have established procedures for

static code analysis and code review.

• Possible measures for secure coding

– Create a list of approved tools and libraries

– Scanning of dependencies for known vulnerabilities
or outdated versions

– Manual code review

– Static code analysis with security rules

16

Testing

• Testers check that the requirements for data protection and information security have been implemented as

planned.

• How to test that requirements for data protection and security have been implemented

– Fuzz testing

– Vulnerability analysis

– Penetration testing

– Threat model and attack surface review

Release

• Planning for how the organisation effectively can handle incidents.

• Procedures for updating software.

• Final security review.

• Incident response plan

– Detect

– Analyse and verify

– Report

– Handle

– Normalise

Maintenance

• The most important element of this activity is that the organisation has implemented a plan for incident

response handling (prepared during the release activity) and follows it.

• Maintenance, service and operation

– Define roles and responsibilities and authority

– Handle the data subjects’ rights and request related
to this, such as data access, modification, deletion,
data portability, consent, information, transparency,
etc.

– Continuously assess the effectiveness of technical and
organisational security measures for uncovering vul-
nerabilities.

– Data, platform, network, and software maintenance
– including suppliers

17

5 Lecture 5: Security is a concern and not a feature

How The Human Brain Buys Security:

To most people the best way is to tell people a story instead of statistics.

Why is it that security tasks always get low priority compared to other tasks?

Why are developers in general so seemingly uninterested in security?

Experts keep telling developers to think more about security, so why isn’t everyone doing it?

Why don’t managers realize they need to put security experts in the team just as they put testers in the team?

5.1 Why software security?

Software Security is the practice of building software to be secure and to continue to function properly under malicious

attack. (Gary McGraw)

5.1.1 The three pillars of software security

In order to efficiently and effortlessly create secure software
you need to have a mindset different from what you may
be used to - a mindset where you focus more on design
than on security.

18

5.2 Integrating Software Security into the Development Process

5.2.1 The Touchpoints - in order of effectiveness

1. Code review

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security tests

5. Abuse cases

6. Security requirements

7. Security operations

19

5.3 Avoiding the top 10 software security design flaws

Earn or give, but never assume, trust - Assume data
are compromised

Authorize after you authenticate

• Authorization depends on a given set of privileges,
and on the context of the request

• Failing to revoke authorization can result in authen-
ticated users exercising out-ofdate authorizations

Define an approach that ensures all data are expli-
citly validated

• Use a centralized validation mechanism

• Watch out for assumptions about data

• Avoid blacklisting, use whitelisting

Identify sensitive data and how they should be
handled

• Classify your data into categories

• Watch out for trust boundaries

Understand how integrating external components
changes your attack surface - open SSL

Strictly separate data and control instructions,
and never process control instructions received
from untrusted sources - Co-mingling data and control
instructions in a single entity is bad.

Use an authentication mechanism that cannot be
bypassed or tampered with

• Prevent the user from changing identity without re-
authentication, once authenticated.

• Consider the strength of the authentication a user
has provided before taking action

• Make use of time outs

Use cryptography correctly

• Use standard algorithms and libraries

• Centralize and re-use

• Get help from real experts

• Watch out for key management issues

• Avoid non-random "randomness"

Always consider the users - Don’t assume the users
care about security

Be flexible when considering future changes to ob-
jects and actors - Design for change

5.4 10 Guiding Principles for Software Security

1. Secure the weakest link

2. Practice defense in depth

3. Fail securely

4. Follow the principle of least privilege

5. Compartmentalize

1. Keep it simple

2. Promote privacy

3. Remember that hiding secrets is hard

4. Be reluctant to trust

5. Use your community resources

20

5.5 The Building Security In Maturity Model (BSIMM)

Why BSIMM?

• Informed risk management decisions

• Clarity on what is "the right thing to do" for every-
one involved in software security

• Cost reduction through standard, repeatable pro-
cesses

• Improved code quality

Linking it all to the Business Goals

"The BSIMM is a measuring stick for software security. The best way to use the BSIMM is to compare and contrast

your own initiative with the data about what other organizations are doing contained in the model. You can then

identify goals and objectives of your own and look to the BSIMM to determine which additional activities make sense

for you."

The BSIMM data show that high maturity initiatives are well rounded - carrying out numerous activ-

ities in all twelve of the practices described by the model.

5.5.1 BSIMM vs OpenSAMM

• BSIMM forked from SAMM-beta

• BSIMM based on study of software security practices

• Enables you to compare yourself against others

• Descriptive

• OpenSAMM based on ... experience and knowledge?

• Enables you to evalute yourself against best practice

• Prescriptive

5.5.2 OpenSAMM overview

21

5.5.3 Maturity Levels

0. Implicit starting point representing the activities in the Practice being unfulfilled

1. Initial understanding and ad hoc provision of Security Practice

2. Increase efficiency and/or effectiveness of the Security Practice

3. Comprehensive mastery of the Security Practice at scale

Verification: Security Testing Conducting assessment

22

6 Lecture 6: Building a successful software security program

Secure Development initiative An effort to empower development teams

6.1 Why a Secure Development initiative?

Some observations from the InfoSec department

• Development teams expected InfoSec team to take
care of security

• Pentesting as a last resort before release – causing
delays.

– Vulnerabilities not fixed before production

• Penetrating results revealed obvious security flaws
and bugs.

– Some teams did much better than others.

• Pentesting was effective for finding bugs, but not ne-
cessarily design flaws.

– Pentesters did not have sufficient time to learn
the product of domain.

– Development teams have solid product insight
and domain knowledge.

• Challenging for the development teams to get time
to fix vulnerabilities.

– Increased focus on time to market – shorter it-
erations and quicker deliverables.

• Fixing vulnerabilities late in the development process
is expensive:

– There may be multiple dependencies at this
point

– Other tasks will be delayed – causing the project
to be delayed.

∗ decreasing the likelihood of vulnerabilities
getting fixed.

6.2 A major incident occurs

The InfoSec department gets funding.

23

6.2.1 The Secure Development initiative roadmap 6.2.2 Fact finding – surveys and workshops

6.2.3 The Secure Development initiative roadmap 6.2.4 Secure SDLC activities

6.2.5 Secure SDLC activity structure

Description of the activity

• Trigger - e.g. changes in architecture, new function-
ality added, time

• Objective - e.g. ensuring development team has ne-
cessary competence

• Deliverable - e.g. documented security requirements,
proof of training

Maturity levels, based on a baseline model:

6.2.6 The Secure Development initiative roadmap

24

6.2.7 The Secure Development initiative roadmap 6.2.8 Then what?

Nothing much happened.

• Benchmarking surveys showed little progress

• Software Security Community was held alive by In-
foSec

• Surprisingly few requests for assistance related to the
S-SDLC

• eLearning platform used primarily to achieve compli-
ance with training requirements in PCI (Which was
part of the objective)

6.2.9 What’s going on?

Culture and management commitment takes time.

6.3 A major incident

Seen from the trenches of incident response (cartoon style)

25

6.3.1 What went wrong? 6.3.2 Discussion

What security activities might have helped prevented the
incident?

6.3.3 Last words

• Software security is a cultural thing and management commitment is key.

• Focusing on the security in the product is not enough

– Someone needs to manage the product

– The infrastructure and development tools we use may be our weak points

• Competence trumps tools.

26

7 Lecture 7: OWASP Top 10 and OWASP ASVS

7.1 OWASP flagship projects

Mature projects:

• Application Security Verification Standard (ASVS)

• Top Ten

• Testing Guide

• Software Assurance Maturity Model (SAMM)

• Zed Attack Proxy

• Juice Shop (training environment)

OWASP has a top 10 for Web, Mobile and Controls

Flow chart of how the OWASP was created

27

7.2 OWASP Top 10

7.2.1 A1: Injection

SQL injection, Code injection, Command injection,
Buffer overflow

Preventing injection requires keeping data
separate from commands and queries

7.2.2 A2: Broken authentication

Where possible, implement multi-factor authentication to
prevent automated, credential stuffing, brute force, and

stolen credential re-use attacks.
Do not ship or deploy with any default credentials,

particularly for admin users.

7.2.3 A3: Sensitive data eposure

Classify data processed, stored, or transmitted by an
application. Identify which data is sensitive according to
privacy laws, regulatory requirements, or business needs.
Don’t store sensitive data unnecessarily. Discard it as

soon as possible.

7.2.4 A4: XML External Entities

Developer training is essential to identify and mitigate
XX.

Whenever possible, use less complex data formats.
Patch or upgrade all XML processors and libraries in use.

7.2.5 A5: Broken Access Control

Access control is only effective if enforced in trusted
server-side code or server-less API, where the attacker
cannot modify the access control check or metadata.

With the exception of public resources, deny by default.
Implement access control mechanisms once and re-use

them throughout the application.

7.2.6 A6: Security Misconfiguration

Secure installation processes should be implemented,
including:

• A repeatable hardening process

• A minimal platform without any unnecessary fea-
tures, components

• A task to review and update the configurations

• A segmented application architecture

• An automated process to verify the effectiveness of
the configurations and settings in all environment

28

7.2.7 A7: Cross-site scripting (XSS)

Preventing XSS requires separation of untrusted data
from active browser content.

Using frameworks that automatically escape XSS by
design.

Escaping untrusted HTTP request data based on the
context in the HTML output.

7.2.8 A8: Insecure Deserialization

Applications and APIs will be vulnerable if they
deserialize hostile or tampered objects supplied by an

attacker.
The only safe architectural pattern is not to accept
serialized objects from untrusted sources or to use

serialization mediums that only permit primitive data
types.

7.2.9 A9: Using components with known vulner-
abilities

There should be a patch management process in place to:

• Remove unused dependencies, unnecessary features,
components, files, and documentation.

• Continuously inventory the versions of client-side
and server-side components and their dependencies
using tools

• Only obtain components from official sources over
secure links

• Monitor for libraries and components that are un-
maintained or do not create security patches for older
versions

7.2.10 A10: Insufficient logging & monitoring

• Ensure all login, access control failures, and server-
side input validation failures can be logged with suf-
ficient detail

• Ensure that logs are generated in a format that can
be easily consumed

• Ensure high-value transactions have an audit trail
with integrity controls

• Establish effective monitoring and alerting

• Establish or adopt an incident response and recovery
plan

7.3 OWASP Mobile Top 10(2016)

29

7.3.1 What’s next for developers?

7.4 OWASP Pro Active Controls

The OWASP Top Ten Proactive Controls 2018 is a list of security techniques that should be included in every

software development project.

They are ordered by order of importance, with control number 1 being the most important.

Written by developers – for developers.

7.4.1 OWASP Top Ten Proactive Controls (2018)

C1: Define Security Requirements
C2: Leverage Security Frameworks and Libraries
C3: Secure Database Access
C4: Encode and Escape Data
C5 Validate all Input

C6: Implement Digital Identity
C7: Enfore Access Controls
C8: Protect Data Everywhere
C9: Implement Security Logging and Monitoring
C10: Handle All Errors and Exceptions

7.5 Application Security Verification Standard 4.0

ASVS is a community-driven effort to create a framework of security requirements and controls that focus on defining

the functional and non-functional security controls required when designing, developing and testing modern web

applications and web services.

ASVS has two main goals:

• to help organizations develop and maintain secure applications.

• to allow security service vendors, security tools vendors, and consumers to align their requirements and offerings.

30

7.5.1 Application Security Verification Levels

• The Application Security Verification Standard defines three security verification levels, with each level increas-

ing in depth.

• ASVS Level 1 is for low assurance levels, and is completely penetration testable

• ASVS Level 2 is for applications that contain sensitive data, which requires protection and is the recommended

level for most apps

• ASVS Level 3 is for the most critical applications - applications that perform high value transactions, contain

sensitive medical data, or any application that requires the highest level of trust.

• Each ASVS level contains a list of security requirements. Each of these requirements can also be mapped to

security-specific features and capabilities that must be built into software by developers.

7.6 ASVS Requirements

V1: Architecture, Design and Threat Modeling Requirements

V2: Authentication Verification Requirements

V3: Session Management Verification Requirements

V4: Access Control Verification Requirements

V5: Validation, Sanitization and Encoding Verification Requirements

V6: Stored Cryptography Verification Requirements

V7: Error Handling and Logging Verification Requirements V8: Data Protection Verification Requirements

V9: Communications Verification Requirements

V10: Malicious Code Verification Requirements

V11: Business Logic Verification Requirements

V12: File and Resources Verification Requirements

V13: API and Web Service Verification Requirements

V14: Configuration Verification Requirements

31

7.6.1 V1: Architecture, Design and Threat Modeling Requirements

V1.1 Secure Software Development Lifecycle Requirements
V1.2 Authentication Architectural Requirements
V1.3 Session Management Architectural Requirements
(placeholder)
V1.4 Access Control Architectural Requirements
V1.5 Input and Output Architectural Requirements
V1.6 Cryptographic Architectural Requirements
V1.7 Errors, Logging and Auditing Architectural Require-
ments

V1.8 Data Protection and Privacy Architectural Require-
ments
V1.9 Communications Architectural Requirements
V1.10 Malicious Software Architectural Requirements
V1.11 Business Logic Architectural Requirements
V1.12 Secure File Upload Architectural Requirements
V1.13 API Architectural Requirements (placeholder)
V1.14 Configuration Architectural Requirements

7.6.2 V2: Authentication Verification Requirements

V2.1 Password Security Requirements
V2.2 General Authenticator Requirements
V2.3 Authenticator Lifecycle Requirements
V2.4 Credential Storage Requirements
V2.5 Credential Recovery Requirements

V2.6 Look-up Secret Verifier Requirements
V2.7 Out of Band Verifier Requirements
V2.8 Single or Multi Factor One Time Verifier Require-
ments
V2.9 Cryptographic Software and Devices Verifier Require-
ments
V2.10 Service Authentication Requirements

References: NIST 800-63 - Modern, evidence-based authentication standard

32

7.6.3 V3: Session Management Verification Requirements

V3.1 Fundamental Session Management Requirements
V3.2 Session Binding Requirements
V3.3 Session Logout and Timeout Requirements
V3.4 Cookie-based Session Management

V3.5 Token-based Session Management
V3.6 Re-authentication from a Federation or Assertion
V3.7 Defenses Against Session Management Exploits

7.6.4 V4: Access Control Verification Requirements

V4.1 General Access Control Design

V4.2 Operation Level Access Control

V4.3 Other Access Control Considerations

7.6.5 V5: Validation, Sanitization and Encoding Verification Requirements

V5.1 Input Validation Requirements

V5.2 Sanitization and Sandboxing Requirements

V5.3 Output encoding and Injection Prevention Require-
ments

V5.4 Memory, String, and Unmanaged Code Requirements

V5.5 Deserialization Prevention Requirements

33

7.6.6 V6: Stored Cryptography Verification Requirements

V6.1 Data Classification
V6.2 Algorithms

V6.3 Random Values
V6.4 Secret Management

7.6.7 V7: Error Handling and Logging Verification Requirements

V7.1 Log Content Requirements
V7.2 Log Processing Requirements

V7.3 Log Protection Requirements
V7.4 Error Handling

7.6.8 V8: Data Protection Verification Requirements

V8.1 General Data Protection
V8.2 Client-side Data Protection
V8.3 Sensitive Private Data

34

7.6.9 V9: Communications Verification Requirements

V9.1 Communications Security Requirements

V9.2 Server Communications Security Requirements

7.6.10 V10: Malicious Code Verification Requirements

V10.1 Code Integrity Controls

V10.2 Malicious Code Search

V10.3 Deployed Application Integrity Controls

7.6.11 V11: Business Logic Verification Requirements

V11.1 Business Logic Security Requirements

• Business logic security is so individual to every application that no one checklist will ever apply.

• Business logic security must be designed in to protect against likely external threats - it cannot be added using

web application firewalls or secure communications.

• We recommend the use of threat modelling during design sprints, for example using the OWASP Cornucopia

or similar tools.

35

OWASP Cornucopia

https://www.youtube.com/watch?v=i5Y0akWj31k

7.6.12 V12: File and Resources Verification Requirements

V12.1 File Upload Requirements
V12.2 File Integrity Requirements
V12.3 File execution Requirements

V12.4 File Storage Requirements
V12.5 File Download Requirements
V12.6 SSRF Protection Requirements

7.6.13 V13: API and Web Service Verification Requirements

V13.1 Generic Web Service Security Verification Require-
ments

V13.2 RESTful Web Service Verification Requirements

V13.3 SOAP Web Service Verification Requirements

V13.4 GraphQL and other Web Service Data Layer Secur-
ity Requirements

36

7.6.14 V14: Configuration Verification Requirements

V13.1 Generic Web Service Security Verification Requirements

V13.2 RESTful Web Service Verification Requirements

V13.3 SOAP Web Service Verification Requirements

V13.4 GraphQL and other Web Service Data Layer Security Requirements

Ensure that a verified application has:

• A secure, repeatable, automatable build environ-
ment.

• Hardened third party library, dependency and config-
uration management such that out of date or insecure
components are not included by the application.

• A secure-by-default configuration, such that adminis-
trators and users have to weaken the default security
posture.

Configuration of the application out of the box should be
safe to be on the Internet, which means a safe out of the
box configuration.

37

8 Lecture 8: Domain Driven Design and Code constructs promoting

security - Validation

8.1 Newsbites

Hydro hacked, hackers demand ransomware:

“. . . since cleared the ransomware off its network and is
gradually restoring its systems from backup data.”

“. . . refused to meet the payment demands made by the
hackers, both because the committee had backups of its
data and because complying with hackers can leave agen-
cies vulnerable to future attacks.”

38

8.1.1 How to defend against ransomware?

• Regularly back up files.

• Keep systems and applications updated, or use virtual patching for legacy or unpatchable systems and software.

• Enforce the principle of least privilege: Secure system administrations tools that attackers could abuse;

implement network segmentation and data categorization to minimize further exposure of mission-critical and

sensitive data; disable thirdparty or outdated components that could be used as entry points.

• Secure email gateways to thwart threats via spam and avoid opening suspicious emails.

• Implement defense in depth: Additional layers of security like application control and behavior monitoring

helps thwart unwanted modifications to the system or execution of anomalous files.

• Foster a culture of security in the workplace.

8.2 Domain Driven Design (primer)

Denver Airport baggage handling. Contributing factors
as reported in the press:

Underestimation of complexity. Complex architecture.
Changes in requirements. Underestimation of schedule
and budget. Dismissal of advice from experts. Failure to
build in backup or recovery process to handle situations
in which part of the system failed. The tendency of the

system to enjoy eating people’s baggage.

8.2.1 Requirements for a domain model

For a domain model to be effective, it needs to:

• Be simple so we focus on the essentials

• Be strict so it can be a foundation for writing code

• Capture deep understanding to make the system
truly useful and helpful

• Be the best choice from a pragmatic viewpoint

• Provide us with language we can use whenever we
talk about the system

39

8.2.2 The purpose of The Domain Model

8.2.3 Bounded Context

a construct for security

• A term or concept may have the same name in various parts of the business, but each usage may have different

meaning (example - "package")

• As long as the meanings of terms, operations, and concepts remain the same, the model holds. But as soon as

the semantics change, the model breaks and the boundary of the context is found.

40

Bounded Context Example Context Map

8.2.4 Why Domain Model for Security?

If we know exactly what the sytem should do we also know what it should not do

8.3 Code Construts Promoting Security - Validation

8.3.1 Injection: why an issue?

System Complexity

Trust-assumption fails

• Trust no client

• Trust no network

• Do all validation server-side

41

8.3.2 SQL injection

SQL injection basics

• Fundamental problem

– concatenation of untrusted data (raw user in-
put) to trusted data and the whole strings is
being sent to the backend database for execu-
tion.

• HOW

– Bypass checks (–)

– Inject information (;)

• To perform an attack you need to know:

– Is there a database?

– What type of database?

– SQL syntax

Steps to plan & execute SQLi

1. Survey application

2. Determine user-controllable input susceptibel to in-
jection

3. Experiment and try to exploit SQLi vulnerability

Indicators:

• Negative: Attacker receives normal response from
server.

• Positive: Attacker receives an error message from
the server indicating that there was a problem with
the SQL query.

Why so common?

What can you acheive?

• Bypass authentication

• Privilege escalation

• Stealing information

• Destruction

42

SQL injection: examples SQL injection: protection

• Prepared statements (?)

• Stored procedures

• Escaping input (filter sql syntax characters before
submitting to DB)

• Whitelisting

• WAF

• Restrict access rights for DB user (Principle of least
privilege))

• Compartmentalize DB

Common mistake: using one DB user with broad access
rights - shared by everyone.

8.3.3 Cross-site scripting (XSS)

• Presenting a user with fraudulent web site content

• Scripts entered into the form field of URL of vulner-
able site

• One user enters a script that is executed on the com-
puter of another user

HOW:

• When user supplies input data that is echoed to other
users

• Form input fields that save data to permanent stor-
age

• Or URL with CGI parameters

43

XSS - Protection Filter out code from user-supplied input data

• Whitelisting (data that is allowed

Remove the ability for data to be misinterpreted as code

• Transform to pure HTML on server before displaying

• <>=> > <

8.3.4 Cross-site request forgery (CSRF/XSRF)

How common?

Exploits:

• Site with authenticated users

• That doesn’t validate the referrer header in a request

Often combined with:

• XSS: to inject malicious tag

Protection:

• Requiring re-authentication by user on critical transactions

• Limit session cookie lifetime

• Don’t allow browser to remember credentials

• Always log out

44

8.3.5 Buffer overflow

How common?

8.4 Input Validation Strategies

Input validation is performed to ensure only properly formed data is entering the workflow in an information system

8.4.1 Strategies

• Syntactic validation should enforce correct syntax
of structured fields (e.g. SSN, date, currency symbol)

• Semantic validation should enforce correctness of
their values in the specific business context (e.g.
start date is before end date, price is within expected
range)

It is always recommended to prevent attacks as early as
possible in the processing of the user’s (attacker’s) request.
Input validation can be used to detect unauthorized input
before it is processed by the application.

45

8.4.2 Whitelisting vs blacklisting

• White list validation is appropriate for all input fields provided by the user.

• White list validation involves defining exactly what IS authorized, and by definition, everything else is not

authorized.

– If it’s well structured data, like dates, social security numbers, zip codes, e-mail addresses, etc. then the

developer should be able to define a very strong validation pattern, usually based on regular expressions,

for validating such input.

– If the input field comes from a fixed set of options, like a drop down list or radio buttons, then the input

needs to match exactly one of the values offered to the user in the first place.

• It is a common mistake to use black list validation in order to try to detect possibly dangerous characters

and patterns like the apostrophe ’ character, the string 1=1, or the <script> tag, but this is a massively

flawed approach as it is trivial for an attacker to avoid getting caught by such filters.

8.5 Client Side vs Server Side Validation

• Be aware that any JavaScript input validation per-
formed on the client can be bypassed by an attacker
that disables JavaScript or uses a Web Proxy.

• Ensure that any input validation performed on the
client is also performed on the server

46

9 Lecture 9: Cloud Security

9.1 Cloud aspects and security

Cloud definition

NIST Special Publication 800-145:

Definition of Cloud Computing: Cloud computing is a model for enabling ubiquitous, convenient, ondemand

network access to a shared pool of configurable computing resources(e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort or service

provider interaction.

9.1.1 Cloud models

9.1.2 Compliance

47

9.1.3 Exit strategy

- An exit strategy from the start

- Solution design must support exit strategy

- Assess vendor, solutions and components regularly

- Consider backup with another provider (or on premise)

- Everything based on risk assessments

9.1.4 Useful tools

Literature:

• Cloud Security Alliance: https : //cloudsecurityalliance.org/

• https : //www.ncsc.gov.uk/guidance/implementing − cloud− security − principles

• NIST Cloud Computing Reference Architecture 500-292

• NIST Definition of Cloud Computing 800-145

Tools:

• Cloud Service Providers tools and documentation

– Azure: https : //azure.microsoft.com/en− us/solutions/architecture/

– AWS: https : //media.amazonwebservices.com/architecturecenter/

• Netflix (Amazon AWS)

– Security monkey: https : //netflix.github.io/

• Spotify (Google Cloud)

– Google Cloud Security Toolbox: https : //labs.spotify.com/

In short: Risk assessments are necessary!

48

9.2 Software architecture Cloud

49

50

Risk assessments are necessary!

51

10 Lecture 10: Secure Software Engineering at Vipps

10.1 Background

10.1.1 Vipps history

• 2014 DNB orders mobile payment from Tata Con-
sulting Services

• 2015 Launch in May

• 2016 known by 90% of population, 2 million custom-
ers

• 2017 Merge with mCASH, standalone company
owned by 107 banks

• 2018 Merge of Vipps, BankAxept and BankID

10.1.2 Standalone Vipps

• Tech company

• Flat structure, classic Norwegian

• From outsourcing to insourcing

• Conway’s law – product reflects organization

• Product teams, ownership and responsibility

10.1.3 Vipps technology stack

• Microsoft Azure with Financial Addendum

• Java, Golang, Python, some C#

• Github and Azure DevOps

• SQL Server, Cosmos DB

• Containerized applications, multiple services

• Managed Kubernetes (AKS), Web service for con-
tainers

10.1.4 Changing Vipps

• Mindset

• Processes

• Tooling

• Shift left security

• DevOps

• DevSecOps

• From bi-monthly (or fewer) releases, to

• 2-10 releases per day and speeding up

• Apps 2 weeks release cycle

52

10.1.5 Culture

• Motivated, creative, responsible craftspeople

• Startup vibe

• Some level of meritocracy

• Influence and motivate

10.1.6 Reality check

• People are irrational

• The world is chaotic

10.1.7 Security in practice

• Up against deadlines, resource scarcity, priorities

• People are not idiots

• People make mistakes, errors of judgement

10.1.8 Vipps and security

• External requirements (IKT-forskrift, BITS, eIDAS)

• Internal requirements (security department)

• Team responsibility

• Secure Software Development Lifecycle (S-SDLC)

10.2 Secure Software Development Lifecycle (S-SDLC)

10.2.1 Training

• Nanolearning for awareness and repetition

• Codebashing for OWASP awareness

• Encourage curiosity and learning in general

10.2.2 Requirements

• Security and privacy requirements and risk assess-
ments are handled

10.2.3 Design

• Introducing threat modeling

10.2.4 Implementation

• Improving logging and insights

• Static Application Security Testing (SAST) proof of concept

• Code review

• Checking third party libraries

• Evaluating various linters and checkers

53

10.2.5 Verification

• Automated security testing

– Unit tests, misuse cases, negative tests

– Integration or regression tests in test environ-
ments

• Pentests

– Reliant on pentests because of legacy

– Will become a validation of DevSecOps process
as we shift left

– Every 2 months and when needed

10.2.6 Release

• Automate all the things

10.2.7 Response

• Vipps Sikkert & Twist

10.3 Vipps and Security

• Psychological safety

• Security culture

• Appreciate security focus and concerns

• Live it

10.3.1 Secure design == good design

• Most quality indicators contribute to good design

• In rare cases, secure decreases other quality attrib-
utes

10.3.2 Deliberate practice

• Concern more than activity – needs dedicated delib-
erate practice

• Experience and knowledge helps you be more effi-
cient

• You have to choose and prioritize secure design

10.3.3 Design all the time

• We make design choices all the time

• More choices than code

• Especially when choosing to omit something

– No trace of the omitted, like missing input val-
idation

• Secure design happens all the time

54

10.4 Questions from sli.do

"How do you train your developers in security?

Nanolearning, codebashing (?? (company version), internal talks addressing specific needs seen in review or pentests

or based on bugs, direct communication and discussions with individuals and teams. Teams and people are also good

at asking for direction and input when needed, which then becomes bespoke just-in-time training.

How do you do threat modeling?

Largely based on work by Adam Shostack, gathering as much of the team as possible and do standard things like

data flow analysis, risk, STRIDE, attack trees, rating and protection poker, trying to figure out what works for us.

The key benefit is the experience and awareness in the team, and how they change and adapt their designs and

thinking. While it’s useful to capture output to prove secure process, it’s not about the report.

Are there any downsides to implementing a S-SDLC?

I think it’s useful to define a development process that works for the organization and includes security aspects that

fit abilities, ambition and needs, and keep changing it as the organization develops.

If you go directly for one of the reference S-SDLC processes, chances are you’ll alienate developers and/or slow down

development until secure development processes are discarded and considered counterproductive.

How do you define a misuse case? Can you give an example?

A use case might be "make a payment"

A misuse case might be "pay with someone else’s money"

55

11 Lecture 11: Leveraging your delivery pipeline for security and Hand-

ling failures securely

Leveraging your delivery pipeline for security

• Delivery pipeline – what is it and why should you
care

• Securing your solution using tests

– Domain rules

– Normal / boundary / invalid / extreme input

• Feature toggles

– Development tool

– Dealing with complexity

– Negatives

• Automated security tests

– Just another test

– Tooling and support

– Infrastructure as Code

• Availability testing

– Estimating headroom

– Exploiting domain rules

• Validating configuration

– Causes for security flaws

– Automated tests

– Know and verify defaults

11.1 Delivery pipeline

Two distinct pipelines: CI and CD pipelines, often referred to as CI/CD

11.1.1 Build pipelines What does a CI pipeline look like?

56

11.1.2 Deployment pipelines What does a CD pipeline look like?

11.2 Securing your solution through unit testing

Domain tule: 4 digits

Input type for test Objective Example test for Norwegian portal code

Normal Happy path / vanilla 1405

Boundary Check limits 0000, 9999, 10000, 0510, 510

Invalid Empty, null, binary, etc. -1, null, $

Extreme Input way beyond 1.0 * 1012

Regular expressions allows you to write complex rules regarding valid input.

11.3 Feature toggles

You could also do this by config:

if (Boolean.valueOf(System.getProperty("feature.enabled"))) OldFeature(); else NewFeature();

57

11.3.1 Testing toggles

Every toggle need a test to counter the added complexity

Note that the tests are not focusing on the behavior of the underlying functionality. They’re only concerned with

verifying if correct behavior is triggered based on the setting of the toggle.

Combinatory complexity:

If you are using multiple toggles you should strive to verify all combinations of them, because there might be indirect

coupling between them. Keep your numbers low.

11.3.2 Toggles - reasons to avoid

• Toggles adds complexity

• Toggles changes behavior

• Chaining makes overview difficult

• Might leave dead code in your solution

• Testing can lead to code resisting changes

• Create a branch instead

– Version branch

– Feature branch

– Work item branch

11.4 Automated security tests

58

11.4.1 Infrastructure as code

Before IaC:

• Developers create resources directly in cloud portal

• Difficult to track who did what

• Difficult to track why a resource was created

• Difficult to know when a resource is safe to remove

• Naming conventions are not always followed

• No transparency as to why a resource has a specific
size

After IaC:

• Any changes to resources are version controlled

• Easy to see who did what when, and what workitem
was involved

• Any changes to scaling is logged, including reason

Beware:

• Errors might tear down huge amounts of resources

• Files might contain secrets

11.5 Testing for availability

Pre-announced unintentional DoS attack

11.5.1 Estimating headroom

Ask yourself this:
How much load can you take? Where does it break?

11.5.2 Exploiting domain rules

• Are you sure you don’t allow negative numbers in
your webshop?

• Can you cancel your airline ticket after purchasing
goods in the tax-free shop?

• Can a competitor automate booking your cancellable
resources?

– Uber accused of booking and cancelling 5000
rides

– Ola accused for the same in India, with 400k
rides

– Hotel owner stating 20% fraudulent reservations
on booking.com

59

11.6 Validating configuration

Main causes for security misconfiguration

• Misunderstanding (lack of doc, contra-intuitive, as-
sumptions, lack of training, lack of tests)

• Unintentional changes (typo, bad merge, wrong con-
fig place, lack of tests)

• Intentional changes (with unforeseen consequences /
side effects, lack of tests)

Cure

• Understand and verify defaults (don’t think, verify!)

• Automated testing (Verify platform and environment
config such as headers, endpoints, verbs etc)

• Repeatable hardening process

• Remove any unused features, libraries, components
and frameworks

Handling failures securely

• Using exceptions

– Throwing

– Handeling

– Payload

• Without exceptions

– Failures are normal

– Designing for failures

• Designing for availability

– Resilience

– Responsiveness

– Circuit breakers

– Bulkheads

• Dealing with bad data

– Do not repair

– Do not echo input

60

11.7 Exceptions

11.7.1 Exception payload

Never include business data in technical exceptions, regardless of whether it’s sensitive or not

Why?

1. This will allow developers to access technical logs prod environment in order to identify and / or reproduce the

error.

2. Less need to set up and configure a secure authorization regime for accessing the log.

3. The technical log will not be a source of information disclosure in case of system compromise

11.8 Handling failures without exceptions

If a business rule prevents some operation, it is not an exception

If you expect some operation might not be allowed due to business rules, test the condition and return a failure.

Further: if an object might be in a state where you cannot do your required operation, do a check and return a

failure instead of throwing an exception. Example: timed pull for files. Do not throw file not found exception.

61

To throw or not to throw

11.9 Designing for availability

NIST definition of availability:

The "goal that generates the requirement for protection against intentional or accidental attempts to (1) perform

unauthorized deletion of data or (2) otherwise cause a denial of service or data."

11.9.1 Resilience

Key characteristics:

• Stable

• Recovers from failure

• Recovers from stress

• Available in the presence of failure

11.9.2 Responsiveness

• Your end user cannot tell the difference between a
slow and a crashed system

• If you cannot accept more requests – give an error to
the user

• Queuing requests is better than dropping requests

• Give feedback that you are processing the request

62

11.9.3 Circuitbreakers

11.9.4 Bulkheads

63

11.10 Bad data

11.10.1 Handling bad data

• Expect external data to be broken, invalid, incom-
plete and hostile

• Invalid data must be rejected

• Do not echo input verbatim

• Beware of secondary level injection

11.10.2 Never fix bad data

• Repair filters are really, really difficult to implement
properly

• How many ways is there to "escape" the < character?
< ?

• Let’s take a look at OWASP XSS evasion cheat sheet

11.10.3 Never echo input

• As input must be considered hostile, it must not be presented before safe to do so.

• Input filtering prevents injection attacks

• Output filtering prevents XSS attacks

• You will need both

64

